Cognitive Neurodynamics

, Volume 6, Issue 3, pp 251–257 | Cite as

Synaptic consolidation: an approach to long-term learning

  • Claudia Clopath
Research Article


Synaptic plasticity is thought to be the basis of learning and memory, but it is mostly studied on the timescale of mere minutes. This review discusses synaptic consolidation, a process that enables synapses to retain their strength for a much longer time (days to years), instead of returning to their original value. The process involves specific plasticity-related proteins, and depends on the dopamine D1/D5 receptors. Here, we review the research on synaptic consolidation, describing electrophysiology experiments, recent modeling work, as well as behavioral correlates.


Synaptic tagging Synaptic consolidation Synaptic plasticity Model Behavior Electrophysiology Review 



This work was funded in part by the Agence Nationale de la Recherche grant ANR-08-SYSC-005. We thank Tom Schaul for helpful input.


  1. Amit D, Fusi S (1994) Learning in neural networks with material synapses. Neural Comput 6:957–982CrossRefGoogle Scholar
  2. Artola A, Bröcher S, Singer W (1990) Different voltage dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347:69–72PubMedCrossRefGoogle Scholar
  3. Ballarini F, Moncada D, Martinez MC, Alen N, Viola H (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci USA 106:14599–14604PubMedCrossRefGoogle Scholar
  4. Barrett A, Billings G, Morris R, van Rossum M (2009) State based model of long-term potentiation and synaptic tagging and capture. PLoS Comp Biol 5(1):e1000259. doi: 10.1371/journal.pcbi.1000259 CrossRefGoogle Scholar
  5. Bi G, Poo M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedGoogle Scholar
  6. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48PubMedGoogle Scholar
  7. Bliss T, Lomo T (1973) Long-lasting potentation of synaptic transmission in the dendate area of anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:351–356Google Scholar
  8. Clopath C, Gerstner W (2010) Voltage and spike timing interact in stdp: a unified model. Frontiers in synaptic neuroscience doi: 10.3389/fnsyn.2010.00025
  9. Clopath C, Vasilaki E, Buesing L, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based spike-timing-dependent-plasticity with homeostasis. Nat Neurosci 13:344–352PubMedCrossRefGoogle Scholar
  10. Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4(12):e1000248. doi: 10.1371/journal.pcbi.1000248
  11. Diba K, Buzsaki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10:1241–1242PubMedCrossRefGoogle Scholar
  12. Frey U, Morris R (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536PubMedCrossRefGoogle Scholar
  13. Frey U, Schroeder H, Matthies H (1990) Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the ca1 region of rat hippocampal slices. Brain Res 522:69–75PubMedCrossRefGoogle Scholar
  14. Froemke R, Dan Y (2002) Spike-timing dependent plasticity induced by natural spike trains. Nature 416:433–438PubMedCrossRefGoogle Scholar
  15. Froemke RC, Tsay I, Raad M, Long J, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95:1620–1629PubMedCrossRefGoogle Scholar
  16. Fusi S, Drew P, Abbott L (2005) Cascade models of synaptically stored memories. Neuron 45:599–611PubMedCrossRefGoogle Scholar
  17. Gerstner W, Abbott LF (1997) Learning navigational maps through potentiation and modulation of hippocampal place cells. J Comput Neurosci 4:79–94PubMedCrossRefGoogle Scholar
  18. Gerstner W, Kempter R, van Hemmen J, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76–78PubMedCrossRefGoogle Scholar
  19. Gerstner W, Kistler WK (2002) Spiking neuron models. Cambridge University Press, CambridgeGoogle Scholar
  20. Gütig R, Aharonov S, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23(9):3697–3714PubMedGoogle Scholar
  21. Guyonneau R, VanRullen R, Thorpe S (2005) Neurons tune to the earliest spikes through stdp. Neural Comput 17(4):859–879PubMedCrossRefGoogle Scholar
  22. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  23. Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295PubMedCrossRefGoogle Scholar
  24. Kirwan CB, Wixted JT, Squire LR (2008) Activity in the medial temporal lobe predicts memory strength, whereas activity in the prefrontal cortex predicts recollection. J Neurosci 28:10541–10548PubMedCrossRefGoogle Scholar
  25. Legenstein R, Naeger C, Maass W (2005) What can a neuron learn with spike-timing dependent plasticity. Neural Comput 17:2337–2382PubMedCrossRefGoogle Scholar
  26. Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531PubMedGoogle Scholar
  27. Lynch G, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739PubMedCrossRefGoogle Scholar
  28. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postysnaptic AP and EPSP. Science 275:213–215PubMedCrossRefGoogle Scholar
  29. Moncada D, Viola H (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci 27(28):7476–7481PubMedCrossRefGoogle Scholar
  30. Nadal J-P, Toulouse G, Changeux J-P, Dehaene S (1986) Networks of formal neurons and memory palimpsests. Europhys Lett 1:349–381CrossRefGoogle Scholar
  31. Navakkode S, Sajikumar S, Frey J (2007) Synergistic requirements for the induction of dopaminergic D1/D5-receptor-mediated LTP in hippocampal slices of rat CA1 in vitro. Neuropharmacology 52:1547–1554PubMedCrossRefGoogle Scholar
  32. Ngezahayo A, Schachner M, Artola A (2000) Synaptic activation modulates the induction of bidirectional synaptic changes in adult mouse hippocamus. J Neurosci 20:2451–2458PubMedGoogle Scholar
  33. O’Connor D, Wittenberg G, Wang S-H (2005) Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci USA 102:9679–9684PubMedCrossRefGoogle Scholar
  34. Oja E (1982) A simplified neuron as a principal component analyzer. J Math Biol 15:267–273PubMedCrossRefGoogle Scholar
  35. Petersen C, Malenka R, Nicoll R, Hopfield J (1998) All-or-none potentiation of ca3-ca1 synapses. Proc Natl Acad Sci USA 95:4732–4737PubMedCrossRefGoogle Scholar
  36. Pfister J-P, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26:9673–9682PubMedCrossRefGoogle Scholar
  37. Pfister J-P, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning. Neural Comput 18:1309–1339CrossRefGoogle Scholar
  38. Redondo R, Morris R (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12(1):17–30PubMedCrossRefGoogle Scholar
  39. Reymann K, Frey J (2007) The late maintenance of hippocampal LTP: requirements, phases,synaptic tagging, late associativity and implications. Neuropharmacology 52:24–40PubMedCrossRefGoogle Scholar
  40. Roberts P, Bell C (2000) Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Comput Neurosci 9:67–83CrossRefGoogle Scholar
  41. Sajikumar S, Frey J (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82:12–25PubMedCrossRefGoogle Scholar
  42. Sajikumar S, Frey J (2004) Resetting of synaptic tags is time- and activity dependent in rat hippocampal ca1 in vitro. Neuroscience 129:503–507PubMedCrossRefGoogle Scholar
  43. Sajikumar S, Navakkode S, Sacktor T, Frey J (2005) Synaptic tagging and cross-tagging: the role of protein kinase Mζ in maintaining long-term potentiation but not long-term depression. J Neurosci 25:5750–5756PubMedCrossRefGoogle Scholar
  44. Schultz W, Dayan P, Montague R (1997) A neural substrate for prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  45. Sjöström P, Turrigiano G, Nelson S (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRefGoogle Scholar
  46. Smith CN, Squire LR (2009) Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory. J Neurosci 29:930–938PubMedCrossRefGoogle Scholar
  47. Song S, Miller K, Abbott L (2000) Competitive Hebbian learning through spike-time-dependent synaptic plasticity. Nat Neurosci 3:919–926PubMedCrossRefGoogle Scholar
  48. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatr 20:11–21PubMedCrossRefGoogle Scholar
  49. Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  50. Wang S, Redondo R, Morris R (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci USA 107(45):19537–19542PubMedCrossRefGoogle Scholar
  51. Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Université Paris DescartesParisFrance

Personalised recommendations