Cognitive Neurodynamics

, Volume 5, Issue 1, pp 45–53 | Cite as

Transient coordinated activity within the developing brain’s default network

  • Vera Nenadovic
  • Luis Garcia Dominguez
  • Marc D. Lewis
  • O. Carter SneadIII
  • Andriy Gorin
  • Jose Luis Perez Velazquez
Research Article

Abstract

The concept of a brain default network postulates that specific brain regions are more active when a person is engaged in introspective mental activity. Transient functional coordination between groups of neurons is thought to be necessary for information processing. Since children develop introspection as they mature, regions of the default network may establish increasing functional coordination with age, resulting in fewer fluctuations in synchronization patterns. We investigated the transient coordinated activity in regions of the default network in seventeen children aged 11 months to 17 years of age using EEG recordings while subjects were resting quietly with eyes closed. The temporal and spatial fluctuations in the phase synchrony patterns were estimated across sites associated with the default network pattern and compared to other regions. Lower variability of the spatio-temporal patterns of phase synchronization associated with the default network was observed in the older group as compared to the younger group. This indicates that functional coordination increases among regions of the default network as children develop.

Keywords

Default network Instantaneous phase Synchronization Fluctuations Electroencephalography 

Notes

Acknowledgments

The authors would like to thank the EEG technician team: Rohit Sharma, Bill Chu, Amrita Viljoen and Ashleigh Smith-Adam at The Hospital for Sick Children, under the direction of Dr. Hiroshi Otsubo for their technical expertise and support in this study. This work is supported by an NSERC Discovery Grant and a CIHR Banting and Best Doctoral Fellowship Award.

References

  1. Bastiaansen M, Hagoort P (2006) Oscillatory neuronal dynamics during language comprehension. Prog Brain Res 159:179–196PubMedCrossRefGoogle Scholar
  2. Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5(1):26–36PubMedCrossRefGoogle Scholar
  3. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  4. Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford, UK, pp 112–117Google Scholar
  5. Cantero JL, Atienza M (2005) The role of neural synchronization in the emergence of cognition across the wake-sleep cycle. Rev Neurosci 16(1):69–83PubMedGoogle Scholar
  6. Chen AC, Feng W, Zhao H, Yin Y, Wang P (2008) EEG default mode network in the human brain: spectral regional field powers. Neuroimage 41(2):561–574PubMedCrossRefGoogle Scholar
  7. Cherniak C, Mokhtarzada Z, Rodriguez-Esteban R, Changizi BK (2004) Global optimization of cerebral cortex layout. PNAS 101(4):1081–1086PubMedCrossRefGoogle Scholar
  8. Fair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2007) Development of distinct control networks through segregation and integration. PNAS 104(33):13507–13512PubMedCrossRefGoogle Scholar
  9. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105(10):4028–4032PubMedCrossRefGoogle Scholar
  10. Fell J, Fernandez G, Elger CE (2003) More than synchrony: EEG chaoticity may be necessary for conscious brain functioning. Med Hypo 61(1):158–160CrossRefGoogle Scholar
  11. Friston KJ (2001) Brain function, nonlinear coupling, and neuronal transients. Neuroscientist 7:406–418PubMedCrossRefGoogle Scholar
  12. Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci USA 106(24):9931Google Scholar
  13. Garcia Dominguez L, Guevara Erra R, Wennberg R, Perez Velazquez JL (2008) On the spatial organization of epileptiform activity. Int J Bifur Ch 18(2):429–439CrossRefGoogle Scholar
  14. Ghosh A, Rho Y, McIntosh AR, Kotter R, Jirsa VK (2008a) Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn Neurodyn 2:115–120PubMedCrossRefGoogle Scholar
  15. Ghosh A, Rho Y, McIntosh AR, Kotter R, Jirsa VK (2008b) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4(10):e1000196. doi:10.1371/journal.pcbi.1000196 PubMedCrossRefGoogle Scholar
  16. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF III, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thimpson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101(21):8174–8179PubMedCrossRefGoogle Scholar
  17. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78. Epub 2008 Apr 9Google Scholar
  18. Guevara R, Pérez Velazquez JL, Nenadovic V, Wennberg R, Senjanović G, Garcia Dominguez L (2005) Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony? Neuroinformatics 3(4):301–313PubMedCrossRefGoogle Scholar
  19. Hagemann D, Naumann E, Thayer JF (2001) The quest for the EEG reference revisited: a glance from brain asymmetry research. Psychophys 38:847–857CrossRefGoogle Scholar
  20. Ingvar DH (1974) Patterns of brain activity revealed by measurements of regional cerebral blood flow. Alfred Benzon Symposium VIII. Copenhagen.Google Scholar
  21. Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T (2009) BOLD correlates of EEG alpha-phase locking and the fMRI default mode network. Neuroimage 45:903–916PubMedCrossRefGoogle Scholar
  22. Kaiser DA (2008) Functional connectivity and aging: comodulation and coherence differences. J Neurother 12(2 & 3):123–139CrossRefGoogle Scholar
  23. Kelway P (2003) Orderly approach to visual analysis: elements of normal EEG and their characteristics in children and adults. In: Ebersole JS, Pedley TA (eds) Current practice of clinical electroencephalography, 3rd edn. Lippincott Williams & Wilkins P., Philadelphia, pp 463–482Google Scholar
  24. Laufs H (2008) Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI Hum. Brain Mapp 29(7):762–769CrossRefGoogle Scholar
  25. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electrographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100(19):11053–11058PubMedCrossRefGoogle Scholar
  26. Lewis MD (2005) Self-organizing individual differences in brain development. Dev Rev 25:252–277CrossRefGoogle Scholar
  27. Lutz A, Lachaux JP, Martinerie J, Varela FJ (2002) Guiding the study of brain dynamics by using first-person data: synchrony patterns correlate with ongoing conscious states during a simple visual task. Proc Natl Acad Sci USA 99:1586–1591PubMedCrossRefGoogle Scholar
  28. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104(32):13170–13175PubMedCrossRefGoogle Scholar
  29. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395PubMedCrossRefGoogle Scholar
  30. McIntosh AR, Kovacevic N, Itier RJ (2008) Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4(7):e1000106. doi:10.1371/journal.pcbi.1000106 PubMedCrossRefGoogle Scholar
  31. Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144:358–369CrossRefGoogle Scholar
  32. Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23(3):371–398PubMedCrossRefGoogle Scholar
  33. Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalo Clin Neurophysio 103(5):499–515CrossRefGoogle Scholar
  34. Perez Velazquez JL, Wennberg R (eds) (2009) Coordinated activity in the brain: measurements and relevance to brain function and behaviour. Springer, New YorkGoogle Scholar
  35. Perez Velazquez JL, Garcia Dominguez L, Wennberg R (2007) The fluctuating brain: dynamics of neuronal activity. In: Wang CW (ed) Nonlinear phenomena research perspectives. Nova Science Publishers Inc., New York, pp 417–444Google Scholar
  36. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Qubbaj MR, Jirsa VK (2009) Neural field dynamics under variation of local and global connectivity and finite transmission speed. Physica D: Nonlinear Phenomena 238(23–24):2331–2346CrossRefGoogle Scholar
  38. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090PubMedCrossRefGoogle Scholar
  39. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. PNAS 98:676–682PubMedCrossRefGoogle Scholar
  40. Serrien DJ (2008) The neural dynamics of timed motor tasks: evidence from a synchronization-continuation paradigm. Eur J Neurosci 27(6):1553–1560PubMedCrossRefGoogle Scholar
  41. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24(38):8223–8231PubMedCrossRefGoogle Scholar
  42. Sporns O (2003) Network analysis, complexity and brain function. Complexity 8(1):56–60CrossRefGoogle Scholar
  43. Thatcher RW, North DM, Biver CJ (2007) Development of cortical connections as measured by EEG coherence and phase delays. Hum Brain Mapp 29(12):1400–1415CrossRefGoogle Scholar
  44. Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 90:5033–5037CrossRefGoogle Scholar
  45. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22:165–178PubMedCrossRefGoogle Scholar
  46. Varela FJ, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and largescale integration. Nat Rev Neurosci 2:229–239PubMedCrossRefGoogle Scholar
  47. Winter WR, Nunez PL, Ding J, Srinivasan R (2007) Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence. Stat Med 26(21):3946–3957PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Vera Nenadovic
    • 1
    • 2
  • Luis Garcia Dominguez
    • 2
  • Marc D. Lewis
    • 3
  • O. Carter SneadIII
    • 2
    • 4
  • Andriy Gorin
    • 2
  • Jose Luis Perez Velazquez
    • 2
    • 4
  1. 1.Department of Critical Care MedicineToronto Hospital For Sick ChildrenTorontoUSA
  2. 2.Brain and Behaviour Centre, Neuroscience and Mental Health ProgrammeToronto Hospital For Sick ChildrenTorontoUSA
  3. 3.Department of Human Development and Applied Psychology, Program In NeuroscienceUniversity of TorontoTorontoUSA
  4. 4.Department of NeurologyToronto Hospital For Sick ChildrenTorontoUSA

Personalised recommendations