Cognitive Neurodynamics

, Volume 4, Issue 1, pp 1–24 | Cite as

Mapping of contextual modulation in the population response of primary visual cortex

Review

Abstract

We review the evidence of long-range contextual modulation in V1. Populations of neurons in V1 are activated by a wide variety of stimuli outside of their classical receptive fields (RF), well beyond their surround region. These effects generally involve extra-RF features with an orientation component. The population mapping of orientation preferences to the upper layers of V1 is well understood, as far as the classical RF properties are concerned, and involves organization into pinwheel-like structures. We introduce a novel hypothesis regarding the organization of V1’s contextual response. We show that RF and extra-RF orientation preferences are mapped in related ways. Orientation pinwheels are the foci of both types of features. The mapping of contextual features onto the orientation pinwheel has a form that recapitulates the organization of the visual field: an iso-orientation patch within the pinwheel also responds to extra-RF stimuli of the same orientation. We hypothesize that the same form of mapping applies to other stimulus properties that are mapped out in V1, such as colour and contrast selectivity. A specific consequence is that fovea-like properties will be mapped in a systematic way to orientation pinwheels. We review the evidence that cytochrome oxidase blobs comprise the foci of this contextual remapping for colour and low contrasts. Neurodynamics and motion in the visual field are argued to play an important role in the shaping and maintenance of this type of mapping in V1.

Keywords

Contextual modulation Cortical maps Orientation pinwheels Cytochrome oxidase blobs Primary visual cortex 

References

  1. Adams DL, Horton JC (2003) A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J Neurosci 23(9):3771–3789PubMedGoogle Scholar
  2. Alexander DM, Wright JJ (2006) The maximum range and timing of excitatory contextual modulation in monkey primary visual cortex. Vis Neurosci 23(5):721–728PubMedCrossRefGoogle Scholar
  3. Alexander DM, Bourke PD, Sheridan P, Konstandatos O, Wright JJ (1998) Emergent symmetry of local and global maps in the primary visual cortex: self-organization of orientation preference. Complexity International 6: http://www.complexity.org.au/ci/vol06/alexander/alexander.html
  4. Alexander DM, Bourke PD, Sheridan P, Konstandatos O, Wright JJ (2004) Intrinsic connections in tree shrew V1 imply a global to local mapping. Vision Res 44(9):857–876PubMedCrossRefGoogle Scholar
  5. Allman JM, Miezin FM, McGuinness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci 8:407–430PubMedCrossRefGoogle Scholar
  6. Angelucci A, Levitt JB, Walton EJS, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22(19):8633–8646PubMedGoogle Scholar
  7. Azzopardi P, Cowey A (1996) Models of ganglion cell topography in the retina of macaque monkeys and their application to sensory cortical scaling. Neuroscience 72(3):617–625PubMedCrossRefGoogle Scholar
  8. Bair W, Movshon JA (2004) Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J Neurosci 24(33):7305–7323PubMedCrossRefGoogle Scholar
  9. Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome-oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci USA 89(24):11905–11909PubMedCrossRefGoogle Scholar
  10. Basole A, White LE, Fitzpatrick D (2003) Mapping multiple features in the population response of visual cortex. Nature 423(6943):986–990PubMedCrossRefGoogle Scholar
  11. Basole A, Kreft-Kerekes V, White LE, Fitzpatrick D (2006) Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Visual perception, Part 1. Fundamentals of vision: low and mid-level processes in perception. Prog Brain Res 154:121–134PubMedCrossRefGoogle Scholar
  12. Benucci A, Frazor RA, Carandini M (2007) Standing waves and travelling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117PubMedCrossRefGoogle Scholar
  13. Berry MJ, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398(6725):334–338PubMedCrossRefGoogle Scholar
  14. Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in cats visual-cortex. Exp Brain Res 15(4):439–441PubMedCrossRefGoogle Scholar
  15. Blasdel GG (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12(8):3139–3161PubMedGoogle Scholar
  16. Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual-cortex are arranged in pinwheel-like patterns. Nature 353(6343):429–431PubMedCrossRefGoogle Scholar
  17. Bosking WH, Fitzpatrick D (1995) Physiological correlates of anisotropy in horizontal connections: length summation properties of neurons in layers 2 and 3 of tree shrew striate cortex. Soc Neurosci Abstr 21:1751Google Scholar
  18. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127PubMedGoogle Scholar
  19. Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27(20):5431–5436PubMedCrossRefGoogle Scholar
  20. Brunswik E (1956) Perception and the representative design of psychological experiments. University of California Press, BerkeleyGoogle Scholar
  21. Cao A, Schiller PH (2003) Neural responses to relative speed in the primary visual cortex of rhesus monkey. Vis Neurosci 20(1):77–84PubMedCrossRefGoogle Scholar
  22. Carreira-Perpinan MA, Lister RJ, Goodhill GJ (2005) A computational model for the development of multiple maps in primary visual cortex. Cereb Cortex 15(8):1222–1233PubMedCrossRefGoogle Scholar
  23. Cavanaugh JR, Bair W, Movshon JA (2002) Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J Neurophysiol 88(5):2547–2556PubMedCrossRefGoogle Scholar
  24. Chisum HJ, Mooser F, Fitzpatrick D (2003) Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J Neurosci 23(7):2947–2960PubMedGoogle Scholar
  25. Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J Neurophysiol 77(6):3381–3385PubMedGoogle Scholar
  26. Das A, Gilbert CD (1997) Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387(6633):594–598PubMedCrossRefGoogle Scholar
  27. De Valois KK, De Valois RL, Yund EW (1979) Responses of striate cortex cells to grating and checkerboard patterns. J Physiol Lond 291:483–505PubMedGoogle Scholar
  28. Ding Y, Casagrande VA (1997) The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci 14(4):691–704PubMedCrossRefGoogle Scholar
  29. Eckhorn R, Bruns A, Saam M, Gail A, Gabriel A, Brinksmeyer HJ (2001) Flexible cortical gamma-band correlations suggest neural principles of visual processing. Vis Cogn 8(3/4/5):519–530Google Scholar
  30. Edwards DP, Purpura KP, Kaplan E (1995) Contrast sensitivity and spatial-frequency response of primate cortical-neurons in and around the cytochrome-oxidase blobs. Vision Res 35(11):1501–1523PubMedCrossRefGoogle Scholar
  31. Fiorani M, Rosa MG, Gattass R, Rocha-Miranda CE (1992) Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? Proc Natl Acad Sci USA 89(18):8547–8551CrossRefGoogle Scholar
  32. Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6(3):329–341PubMedCrossRefGoogle Scholar
  33. Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84(3):1266–1278PubMedGoogle Scholar
  34. Fukuda M, Moon CH, Wang P, Kim SG (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci 26(46):11821–11832PubMedCrossRefGoogle Scholar
  35. Goodchild AK, Chan TL, Grunert U (1996) Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Vis Neurosci 13(5):833–845PubMedCrossRefGoogle Scholar
  36. Guo K, Robertson RG, Pulgarin M, Nevado A, Panzeri S, Thiele A, Young MP (2007) Spatio-temporal prediction and inference by V1 neurons. Eur J Neurosci 26(4):1045–1054PubMedCrossRefGoogle Scholar
  37. Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early visual areas. Nature 458(7238):632–635PubMedCrossRefGoogle Scholar
  38. Horton JC, Hocking DR (1996) An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16(5):1791–1807PubMedGoogle Scholar
  39. Horton JC, Hocking DR (1998) Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci 18(14):5433–5455PubMedGoogle Scholar
  40. Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome-oxidase staining in primary visual-cortex of macaque monkey. Nature 292(5825):762–764PubMedCrossRefGoogle Scholar
  41. Huang X, Paradiso MA (2005) Background changes delay information represented in macaque V1 neurons. J Neurophysiol 94(6):4314–4330PubMedCrossRefGoogle Scholar
  42. Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in monkey striate cortex. J Comp Neurol 158(3):267–294PubMedCrossRefGoogle Scholar
  43. Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual-cortex. Proc R Soc Lond B Biol Sci 198(1130):1–59PubMedCrossRefGoogle Scholar
  44. Hubener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17(23):9270–9284PubMedGoogle Scholar
  45. Humphrey AL, Hendrickson AE (1983) Background and stimulus-induced patterns of high metabolic-activity in the visual-cortex (area-17) of the squirrel and macaque monkey. J Neurosci 3(2):345–358PubMedGoogle Scholar
  46. Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129(2):247–259PubMedCrossRefGoogle Scholar
  47. Kapadia MK, Westheimer G, Gilbert CD (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA 96(21):12073–12078PubMedCrossRefGoogle Scholar
  48. Khayat PS, Spekreijse H, Roelfsema PR (2004a) Correlates of transsaccadic integration in the primary visual cortex of the monkey. Proc Natl Acad Sci USA 101(34):12712–12717PubMedCrossRefGoogle Scholar
  49. Khayat PS, Spekreijse H, Roelfsema PR (2004b) Visual information transfer across eye movements in the monkey. Vision Res 44(25):2901–2917PubMedCrossRefGoogle Scholar
  50. Kimura R, Ohzawa I (2009) Time course of cross-orientation suppression in the early visual cortex. J Neurophysiol 101(3):1463–1479PubMedCrossRefGoogle Scholar
  51. Kinoshita M, Komatsu H (2001) Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex. J Neurophysiol 86(5):2559–2570PubMedGoogle Scholar
  52. Kiorpes L, Kiper DC (1996) Development of contrast sensitivity across the visual field in macaque monkeys (Macaca nemestrina). Vision Res 36(2):239–247PubMedCrossRefGoogle Scholar
  53. Kruger J, Fischer B, Barth R (1975) Shift-effect in retinal ganglion-cells of rhesus-monkey. Exp Brain Res 23(4):443–446PubMedCrossRefGoogle Scholar
  54. Lachica EA, Casagrande VA (1992) Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. J Comp Neurol 319(1):141–158PubMedCrossRefGoogle Scholar
  55. Lachica EA, Beck PD, Casagrande VA (1992) Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc Natl Acad Sci USA 89(8):3566–3570PubMedCrossRefGoogle Scholar
  56. Lamme VAF, Super H, Spekreijse H (1998a) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8(4):529–535PubMedCrossRefGoogle Scholar
  57. Lamme VAF, Zipser K, Spekreijse H (1998b) Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc Natl Acad Sci USA 95(6):3263–3268PubMedCrossRefGoogle Scholar
  58. Landisman CE, Ts’o DY (2002a) Color processing in macaque striate cortex: electrophysiological properties. J Neurophysiol 87(6):3138–3151PubMedGoogle Scholar
  59. Landisman CE, Ts’o DY (2002b) Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J Neurophysiol 87(6):3126–3137PubMedGoogle Scholar
  60. Lee TS, Mumford D, Romero R, Lamme VAF (1998) The role of the primary visual cortex in higher level vision. Vision Res 38(15–16):2429–2454PubMedCrossRefGoogle Scholar
  61. Lennie P, Krauskopf J, Sclar G (1990) Chromatic mechanisms in striate cortex of macaque. J Neurosci 10(2):649–669PubMedGoogle Scholar
  62. Levay S, Hubel DH, Wiesel TN (1975) Pattern of ocular dominance columns in macaque visual-cortex revealed by a reduced silver stain. J Comp Neurol 159(4):559–575PubMedCrossRefGoogle Scholar
  63. Leventhal AG, Thompson KG, Liu D, Zhou YF, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layer-2, layer-3, and layer-4 of monkey striate cortex. J Neurosci 15(3):1808–1818PubMedGoogle Scholar
  64. Levitt JB, Lund JS (2002) The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis Neurosci 19(4):439–452PubMedCrossRefGoogle Scholar
  65. Li W, Thier P, Wehrhahn C (2000) Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. J Neurophysiol 83(2):941–954PubMedGoogle Scholar
  66. Linsker R (1986) From basic network principles to neural architecture—emergence of orientation columns. Proc Natl Acad Sci USA 83(22):8779–8783PubMedCrossRefGoogle Scholar
  67. Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual-cortex. J Neurosci 4(1):309–356PubMedGoogle Scholar
  68. Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13(1):15–24PubMedCrossRefGoogle Scholar
  69. Lyon DC, Jain N, Kaas JH (1998) Cortical connections of striate and extrastriate visual areas in tree shrews. J Comp Neurol 401(1):109–128PubMedCrossRefGoogle Scholar
  70. MacEvoy SP, Hanks TD, Paradiso MA (2008) Macaque V1 activity during natural vision: effects of natural scenes and saccades. J Neurophysiol 99(2):460–472PubMedCrossRefGoogle Scholar
  71. Maertens M, Pollmann S (2005) fMRI reveals a common neural substrate of illusory and real contours in V1 after perceptual learning. J Cogn Neurosci 17(10):1553–1564PubMedCrossRefGoogle Scholar
  72. Malach R, Amir Y, Harel M, Grinvald A (1993) Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci USA 90(22):10469–10473PubMedCrossRefGoogle Scholar
  73. Maldonado PE, Godecke I, Gray CM, Bonhoeffer T (1997) Orientation selectivity in pinwheel centers in cat striate cortex. Science 276(5318):1551–1555PubMedCrossRefGoogle Scholar
  74. Mante V, Carandini M (2005) Mapping of stimulus energy in primary visual cortex. J Neurophysiol 94(1):788–798PubMedCrossRefGoogle Scholar
  75. Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201PubMedCrossRefGoogle Scholar
  76. Marrocco RT, Mcclurkin JW, Young RA (1982) Modulation of lateral geniculate-nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2(2):256–263PubMedGoogle Scholar
  77. Martin PR, Lee BB, White AJR, Soloman SG, Ruttiger L (2001) Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410(6831):933–936PubMedCrossRefGoogle Scholar
  78. Mizobe K, Polat U, Pettet MW, Kasamatsu T (2001) Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Vis Neurosci 18(3):377–391PubMedCrossRefGoogle Scholar
  79. Moon CH, Fukuda M, Park SH, Kim SG (2007) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27(26):6892–6902PubMedCrossRefGoogle Scholar
  80. Mullen KT (1991) Color-vision as a post-receptoral specialization of the central visual-field. Vision Res 31(1):119–130PubMedCrossRefGoogle Scholar
  81. Murphy KM, Jones DG, Fenstemaker SB, Pegado VD, Kiorpes L, Movshon JA (1998) Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys. Cereb Cortex 8(3):237–244PubMedCrossRefGoogle Scholar
  82. Nauhaus I, Benucci A, Carandini M, Ringach DL (2008) Neuronal selectivity and local map structure in visual cortex. Neuron 57(5):673–679PubMedCrossRefGoogle Scholar
  83. Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12(1):70–76PubMedCrossRefGoogle Scholar
  84. Obermayer K, Blasdel GG (1993) Geometry of orientation and ocular dominance columns in monkey striate cortex. J Neurosci 13(10):4114–4129PubMedGoogle Scholar
  85. Obermayer K, Ritter H, Schulten K (1990) A principle for the formation of the spatial structure of cortical feature maps. Proc Natl Acad Sci USA 87(21):8345–8349PubMedCrossRefGoogle Scholar
  86. Ohki K, Chung SY, Kara P, Hubener M, Bonhoeffer T, Reid RC (2006) Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442(7105):925–928PubMedCrossRefGoogle Scholar
  87. Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365(2):232–255PubMedCrossRefGoogle Scholar
  88. Plomp G, van Leeuwen C, Ioannides A (2009) Flexible resource allocation in visual cortex accommodates surrounding, semantic, and task-specific context. Hum Brain Mapp (in press)Google Scholar
  89. Ramsden BM, Hung CP, Roe AW (2001) Real and illusory contour processing in area VI of the primate: a cortical balancing act. Cereb Cortex 11(7):648–665PubMedCrossRefGoogle Scholar
  90. Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation tuning in macaque primary visual cortex. Nature 387(6630):281–284PubMedCrossRefGoogle Scholar
  91. Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. J Comp Neurol 441(2):134–147PubMedCrossRefGoogle Scholar
  92. Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual-cortex. J Comp Neurol 216(3):303–318PubMedCrossRefGoogle Scholar
  93. Rockland KS, Vanhoesen GW (1994) Direct temporal-occipital feedback connections to striate cortex (V1) in the Macaque Monkey. Cereb Cortex 4(3):300–313PubMedCrossRefGoogle Scholar
  94. Rockland KS, Saleem KS, Tanaka K (1994) Divergent feedback connections from areas V4 and Teo in the Macaque. Vis Neurosci 11(3):579–600PubMedCrossRefGoogle Scholar
  95. Roelfsema PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey. Nature 395(6700):376–381PubMedCrossRefGoogle Scholar
  96. Rolls ET, Cowey A (1970) Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp Brain Res 10(3):298–310PubMedCrossRefGoogle Scholar
  97. Rossi AF, Desimone R, Ungerleider LG (2001) Contextual modulation in primary visual cortex of macaques. J Neurosci 21(5):1698–1709PubMedGoogle Scholar
  98. Sasaki Y, Rajimehr R, Kim BW, Ekstrom LB, Vanduffel W, Tootell RB (2006) The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 51(5):661–670PubMedCrossRefGoogle Scholar
  99. Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85(5):1873–1887PubMedGoogle Scholar
  100. Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. J Neurophysiol 39(6):1334–1351PubMedGoogle Scholar
  101. Schmid AM (2008) The processing of feature discontinuities for different cue types in primary visual cortex. Brain Res 1238:59–74PubMedCrossRefGoogle Scholar
  102. Schummers J, Marino J, Sur M (2002) Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36(5):969–978PubMedCrossRefGoogle Scholar
  103. Schummers J, Yu HB, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643PubMedCrossRefGoogle Scholar
  104. Schwabe L, Obermayer K, Angelucci A, Bressloff PC (2006) The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. J Neurosci 26(36):9117–9129PubMedCrossRefGoogle Scholar
  105. Sheth BR, Sharma J, Rao SC, Sur M (1996) Orientation maps of subjective contours in visual cortex. Science 274(5295):2110–2115PubMedCrossRefGoogle Scholar
  106. Shostak Y, Ding YC, Mavity-Hudson J, Casagrande VA (2002) Cortical synaptic arrangements of the third visual pathway in three primate species: Macaca mulatta, Saimiri sciureus, and Aotus trivirgatus. J Neurosci 22(7):2885–2893PubMedGoogle Scholar
  107. Sillito AM, Jones HE (1996) Context-dependent interactions and visual processing in V1. J Physiol Paris 90(3–4):205–209PubMedCrossRefGoogle Scholar
  108. Silveira LCL, Perry VH, Yamada ES (1993) The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus. Visual Neurosci 10:887--897CrossRefGoogle Scholar
  109. Slovin H, Arieli A, Hildesheim R, Grinvald A (2002) Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J Neurophysiol 88(6):3421–3438PubMedCrossRefGoogle Scholar
  110. Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4):739–750PubMedCrossRefGoogle Scholar
  111. Sugita Y (1999) Grouping of image fragments in primary visual cortex. Nature 401(6750):269–272PubMedCrossRefGoogle Scholar
  112. Super H, Spekreijse H, Lamme VAF (2001) A neural correlate of working memory in the monkey primary visual cortex. Science 293(5527):120–124PubMedCrossRefGoogle Scholar
  113. Super H, van der Togt C, Spekreijse H, Lamme VAF (2004) Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. Proc Natl Acad Sci USA 101(9):3230–3235PubMedCrossRefGoogle Scholar
  114. Swindale NV (2004) How different feature spaces may be represented in cortical maps. Netw-Comput Neural Syst 15(4):217–242CrossRefGoogle Scholar
  115. Swindale NV, Bauer HU (1998) Application of Kohonen’s self-organizing feature map algorithm to cortical maps of orientation and direction preference. Proc R Soc Lond B Biol Sci 265(1398):827–838CrossRefGoogle Scholar
  116. Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hubener M (2000) Visual cortex maps are optimized for uniform coverage. Nat Neurosci 3(8):822–826PubMedCrossRefGoogle Scholar
  117. Swindale NV, Grinvald A, Shmuel A (2003) The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. Cereb Cortex 13(3):225–238PubMedCrossRefGoogle Scholar
  118. Tani T, Yokoi I, Ito M, Tanaka S, Komatsu H (2003) Functional organization of the cat visual cortex in relation to the representation of a uniform surface. J Neurophysiol 89(2):1112–1125PubMedCrossRefGoogle Scholar
  119. Tootell RBH, Silverman MS, Devalois RL (1981) Spatial-frequency columns in primary visual-cortex. Science 214(4522):813–815PubMedCrossRefGoogle Scholar
  120. Tootell RBH, Hamilton SL, Switkes E (1988a) Functional-anatomy of macaque striate cortex.4. Contrast and Magno-Parvo streams. J Neurosci 8(5):1594–1609PubMedGoogle Scholar
  121. Tootell RBH, Silverman MS, Hamilton SL, Devalois RL, Switkes E (1988b) Functional-anatomy of macaque striate cortex.3. Color. J Neurosci 8(5):1569–1593PubMedGoogle Scholar
  122. Tootell RBH, Silverman MS, Hamilton SL, Switkes E, Devalois RL (1988c) Functional-anatomy of macaque striate cortex.5. Spatial-frequency. J Neurosci 8(5):1610–1624PubMedGoogle Scholar
  123. Toth LJ, Rao SC, Kim DS, Somers D, Sur M (1996) Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci USA 93(18):9869–9874PubMedCrossRefGoogle Scholar
  124. Tso DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8(5):1712–1727Google Scholar
  125. van Leeuwen C (1995) Task, intention, context, globality, ambiguity: more of the same. In: Kruse P, Stadler M (eds) Ambiguity in mind and nature. Springer, BerlinGoogle Scholar
  126. van Leeuwen C (1998) Visual perception on the Edge of Chaos. In: Jordon JS (ed) Systems theories and a priori aspects of perception. Elsevier, AmsterdamGoogle Scholar
  127. Vanduffel W, Tootell RBH, Schoups AA, Orban GA (2002) The organization of orientation selectivity throughout macaque visual cortex. Cereb Cortex 12(6):647–662PubMedCrossRefGoogle Scholar
  128. Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276PubMedCrossRefGoogle Scholar
  129. Wachtler T, Sejnowski TJ, Albright TD (2003) Representation of color stimuli in awake macaque primary visual cortex. Neuron 37(4):681–691PubMedCrossRefGoogle Scholar
  130. Wennekers T (2008) Tuned solutions in dynamic neural fields as building blocks for extended EEG models. Cogn Neurodyn 2(2):137–146PubMedCrossRefGoogle Scholar
  131. Westheimer G (2003) The distribution of preferred orientations in the peripheral visual field. Vision Res 43(1):53–57PubMedCrossRefGoogle Scholar
  132. White LE, Bosking WH, Fitzpatrick D (2001) Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex. Vis Neurosci 18(1):65–76PubMedCrossRefGoogle Scholar
  133. Wielaard J, Sajda P (2006) Extraclassical receptive field phenomena and short-range connectivity in V1. Cereb Cortex 16(11):1531–1545PubMedCrossRefGoogle Scholar
  134. Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171(1):11–28PubMedCrossRefGoogle Scholar
  135. Wright JJ, Bourke PD (2008) An outline of functional self-organization in V1: synchrony, STLR and Hebb rules. Cogn Neurodyn 2(2):147–157PubMedCrossRefGoogle Scholar
  136. Wright JJ, Alexander DM, Bourke PD (2006) Contribution of lateral interactions in V1 to organization of response properties. Vision Res 46(17):2703–2720PubMedCrossRefGoogle Scholar
  137. Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129PubMedCrossRefGoogle Scholar
  138. Yen SC, Baker J, Gray CM (2007) Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J Neurophysiol 97(2):1326–1341PubMedCrossRefGoogle Scholar
  139. Yoshioka T, Blasdel GG, Levitt JB, Lund JS (1996) Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. Cereb Cortex 6(2):297–310PubMedCrossRefGoogle Scholar
  140. Young MP (2000) The architecture of visual cortex and inferential processes in vision. Spat Vis 13(2–3):137–146PubMedCrossRefGoogle Scholar
  141. Yousef T, Toth E, Rausch M, Eysel UT, Kisvarday ZF (2001) Topography of orientation centre connections in the primary visual cortex of the cat. Neuroreport 12(8):1693–1699PubMedCrossRefGoogle Scholar
  142. Zhan CA, Baker CL (2006) Boundary cue invariance in cortical orientation maps. Cereb Cortex 16(6):896–906PubMedCrossRefGoogle Scholar
  143. Zhan CA, Baker CL (2008) Critical spatial frequencies for illusory contour processing in early visual cortex. Cereb Cortex 18(5):1029–1041PubMedCrossRefGoogle Scholar
  144. Zheng D, Lamantia AS, Purves D (1991) Specialized vascularization of the primate visual-cortex. J Neurosci 11(8):2622–2629PubMedGoogle Scholar
  145. Zhou YX, Baker CL (1996) Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat. J Neurophysiol 75(3):1038–1050PubMedGoogle Scholar
  146. Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20(17):6594–6611PubMedGoogle Scholar
  147. Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16(22):7376–7389PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratory for Perceptual DynamicsRIKEN Brain Science InstituteWako-shiJapan

Personalised recommendations