Advertisement

Cognitive Neurodynamics

, 2:257 | Cite as

An empirical EEG analysis in brain death diagnosis for adults

  • Zhe Chen
  • Jianting Cao
  • Yang Cao
  • Yue Zhang
  • Fanji Gu
  • Guoxian Zhu
  • Zhen Hong
  • Bin Wang
  • Andrzej Cichocki
Research article

Abstract

Electroencephalogram (EEG) is often used in the confirmatory test for brain death diagnosis in clinical practice. Because EEG recording and monitoring is relatively safe for the patients in deep coma, it is believed to be valuable for either reducing the risk of brain death diagnosis (while comparing other tests such as the apnea) or preventing mistaken diagnosis. The objective of this paper is to study several statistical methods for quantitative EEG analysis in order to help bedside or ambulatory monitoring or diagnosis. We apply signal processing and quantitative statistical analysis for the EEG recordings of 32 adult patients. For EEG signal processing, independent component analysis (ICA) was applied to separate the independent source components, followed by Fourier and time-frequency analysis. For quantitative EEG analysis, we apply several statistical complexity measures to the EEG signals and evaluate the differences between two groups of patients: the subjects in deep coma, and the subjects who were categorized as brain death. We report statistically significant differences of quantitative statistics with real-life EEG recordings in such a clinical study, and we also present interpretation and discussions on the preliminary experimental results.

Keywords

Brain death Quantitative EEG Independent component analysis Approximate entropy Detrended fluctuation analysis Pattern classification 

Notes

Acknowledgements

This work was supported in part by the Japan Society for the Promotion Science (JSPS) and the National Natural Science Foundation of China (NSFC) in the Japan-China Research Cooperative Program. We thank two anonymous reviewers for many valuable comments.

References

  1. Ad hoc committee of the Harvard medical school to examine the definition of brain death (1968) A definition of irreversible coma. JAMA 205:337–340Google Scholar
  2. Akay M (ed) (2001) Nonlinear biomedical signal processing, vol. II. Dynamical analysis and modeling. IEEE Press, New YorkGoogle Scholar
  3. Buchner H, Schuchardt V (1990) Reliability of electroencephalogram in the diagnosis of brain death. Eur Neurol 30(3):138–141PubMedCrossRefGoogle Scholar
  4. Calhoun VD, Adali T, Pearlson GD, van Zijl PCM, Pekar JJ (2002) Independent component analysis of fMRI data in the complex domain. Magn Reson Med 48:180–192PubMedCrossRefGoogle Scholar
  5. Cao J (2006) Analysis of the quasi-brain-death EEG data based on a robust ICA approach. In: Proc. 10th Int. Conf. Knowledge-Based & Intelligent Information & Engineering Systems, Bournemouth, UK, 2006 (Lecture Notes in Computer Science 4253, pp 1240–1247)Google Scholar
  6. Cao J, Murata N, Amari S, Cichocki A, Takeda T (2002) Independent component analysis for unaveraged single-trial MEG data decomposition and single-dipole source localization. Neurocomputing 49:255–277CrossRefGoogle Scholar
  7. Cao J, Murata N, Amari S, Cichocki A, Takeda T (2003) A robust approach to independent component analysis of signals with high-level noise measurements. IEEE Trans Neural Netw 14:631–645PubMedCrossRefGoogle Scholar
  8. Chen Z, Cao J (2007) An empirical quantitative EEG analysis for evaluating clinical brain death. In: Proc. IEEE 29th annual conf. engineering in medicine and biology (EMBC’07). Lyon, France, pp 3880–3883Google Scholar
  9. Chen F, Xu JH, Gu FJ, Yu XH, Meng, Qiu ZC (2000) Dynamic process of information transmission complexity in human brains. Biol Cybern 83:355–366PubMedCrossRefGoogle Scholar
  10. Chen Z, Ohara S, Cao J, Vialatte F, Lenz FA, Cichocki A (2007) Statistical modeling and analysis of laser-evoked potentials of electrocorticogram recordings from awake humans. Comput Intell Neurosci, vol 2007, Article ID 10479Google Scholar
  11. Cichocki A, Amari S (2002) Adaptive blind signal and image processing. Wiley, New YorkGoogle Scholar
  12. Cohen L (1995) Time-frequency analysis. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  13. Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2:263–286Google Scholar
  14. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov P, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(suppl 1):2466–2472PubMedCrossRefGoogle Scholar
  15. Gonzalez Andino SL, Grave de Peralta Menendez R, Thut G, Spinelli L, Blanke O, Michel CM, Seeck M, Landis T (2000) Measuring the complexity of time series: an application to neurophysiological signals. Hum Brain Mapp 11(1):46–57PubMedCrossRefGoogle Scholar
  16. Gu FJ, Meng X, Shen E (2003) Can we measure consciousness with EEG complexities? Int J Bifurc Chaos 13(3):733–742CrossRefGoogle Scholar
  17. Hornero R, Abásolo D, Jimeno N, Sánchez CI, Poza J, Aboy M (2006) Variability, regularity, and complexity of time series generated by schizophrenic patients and control subjects. IEEE Trans Biomed Eng 53(2):210–217PubMedCrossRefGoogle Scholar
  18. Kaspar F, Schuster HG (1987) Easily calculable measure for the complexity of spatiotemporal patterns. Phys Rev A36:842–848PubMedCrossRefGoogle Scholar
  19. Lin M, Chan H, Fang S (2005) Linear and nonlinear EEG indexes in relation to the severity of coma. In: Proc. IEEE EMBC’05, pp 4580–4583Google Scholar
  20. Litscher G (1999) New biomedical devices and documentation of brain death. Internet J Anesthesiol 3(4)Google Scholar
  21. Little M, McSharry P, Moroz I, Roberts S (2006) Nonlinear, biophysically-informed speech pathology detection. In: Proc. ICASSP’06. Toulouse, France, pp 1080–1083Google Scholar
  22. Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science. 295:690–694PubMedCrossRefGoogle Scholar
  23. Niedermeyer E (ed) (1991) Coma and brain death. In: Electroencephalography: basic principles, clinical applications, and related fields, Chap. 26. Lippoincott Williams & Wilkins, Baltimore, MDGoogle Scholar
  24. Pallis C, MacGillivray B (1980) Brain death and the EEG. Lancet 316:1085–1086CrossRefGoogle Scholar
  25. Papadelis C, Chen Z, Kourtidou-Papadeli C, Bamidis PD, Bekiaris A, Maglaveras N (2007) Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents. Clin Neurophysiol 118(9):1906–1922PubMedCrossRefGoogle Scholar
  26. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689CrossRefGoogle Scholar
  27. Pincus SM (1991) Approximate entropy (ApEn) as a complexity measure. Proc Natl Acad Sci USA 88:110–117CrossRefGoogle Scholar
  28. Pockett S, Whalen S, McPhail AVH, Freeman WJ (2007) Topography, independent component analysis and dipole source analysis of movement related potentials. Cogn Neurodyn 1(4):327–340CrossRefPubMedGoogle Scholar
  29. Roberts J, Penny WD, Rezek I (1998) Temporal and spatial complexity measures for EEG-based brain-computer interfacing. Med Biol Eng Comput 37(1):93–99CrossRefGoogle Scholar
  30. Schneider S (1989) Usefulness of EEG in the evaluation of brain death in children: the cons. Electroencephalogr Clin Neurophysiol 73(4):276–278PubMedCrossRefGoogle Scholar
  31. Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press, Cambridge MAGoogle Scholar
  32. Schölkopf B, Smola AJ, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319CrossRefGoogle Scholar
  33. Taylor RM (1997) Reexamining the definition and criteria of death. Semin Neurol 17:265–270PubMedCrossRefGoogle Scholar
  34. Wennervirta J, Salmi T, Hynynen M, Yli-Hankala A, Koivusalo A-M, Van Gils M, Pöyhiä R, Vakkuri A (2007) Entropy is more resistant to artifacts than bispectral index in brain-dead organ donors. J Intensive Care Med 33(1):133–136CrossRefGoogle Scholar
  35. Wijdicks EFM (1995) Determining brain death in adults. Neurology 45:1003–1011PubMedGoogle Scholar
  36. Wijdicks EFM (2002) Brain death worldwide: accepted fact but no global consensus in diagnostic criteria. Neurology 58:20–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Zhe Chen
    • 1
    • 2
    • 3
  • Jianting Cao
    • 1
    • 4
  • Yang Cao
    • 5
  • Yue Zhang
    • 6
  • Fanji Gu
    • 5
  • Guoxian Zhu
    • 6
  • Zhen Hong
    • 6
  • Bin Wang
    • 7
  • Andrzej Cichocki
    • 1
  1. 1.Laboratory for Advanced Brain Signal ProcessingRIKEN Brain Science InstituteWako-shiJapan
  2. 2.Neuroscience Statistics Research Laboratory, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Human RoboticsSaitama Institute of TechnologyFukaya-shiJapan
  5. 5.Brain Science Research Center, Institute of Brain ScienceFudan UniversityShanghaiChina
  6. 6.Huashan HospitalFudan UniversityShanghaiChina
  7. 7.Department of Electrical EngineeringFudan UniversityShanghaiChina

Personalised recommendations