Skip to main content
Log in

Anticipation of natural stimuli modulates EEG dynamics: physiology and simulation

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In everyday life we often encounter situations in which we can expect a visual stimulus before we actually see it. Here, we study the impact of such stimulus anticipation on the actual response to a visual stimulus. Participants were to indicate the sex of deer and cattle on photographs of the respective animals. On some trials, participants were cued on the species of the upcoming animal whereas on other trials this was not the case. Time frequency analysis of the simultaneously recorded EEG revealed modulations by this cue stimulus in two time windows. Early \(({\approx}100\,\hbox{ms})\) spectral responses \(({\approx}20\,\hbox{Hz})\) displayed strongest stimulus-locking for stimuli that were preceded by a cue if they were sufficiently large. Late \(({\approx}300\,\hbox{ms}, \ 40\,\hbox{Hz})\) responses displayed enhanced amplitudes in response to large stimuli and to stimuli that were preceded by a cue. For late responses, however, no interaction between cue and stimulus size was observed. We were able to explain these results in a simulation by prestimulus gain modulations (early response) and by decreased response thresholds (late response). Thus, it seems plausible, that stimulus anticipation results in a pretuning of local neural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott LF, Chance FS (2005) Drivers and modulators from push–pull and balanced synaptic input. Prog Brain Res 149:147–155

    Article  CAS  PubMed  Google Scholar 

  • Bar M (2007) The proactive brain: using analogies and associations to generate predictions. TRENDS Cogn Sci 11(7):280–289

    Article  PubMed  Google Scholar 

  • Basar E, Schürmann M, Başar-Eroglu C, Demiralp T (2001) Selectively distributed gamma band system of the brain. Int J Psychophysiol 39:129–135

    Article  CAS  PubMed  Google Scholar 

  • Basar-Eroglu C, Struber D, Schurmann M, Stadler M, Basar E (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int J Psychophysiol 24(1–2):101–112

    Article  CAS  PubMed  Google Scholar 

  • Bodis-Wollner I, Davis J, Tzelepi A, Bezerianos T (2001) Wavelet transform of the EEG reveals differences in low and high gamma responses to elementary visual stimuli. Clin Electroencephalogr 32(3):139–144

    CAS  PubMed  Google Scholar 

  • Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115(8):1810–1820

    Article  PubMed  Google Scholar 

  • Busch NA, Herrmann CS, Müller MM, Lenz D, Gruber T (2006a) A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm. NeuroImage 33:1169–1177

    Article  PubMed  Google Scholar 

  • Busch NA, Schadow J, Fründ I, Herrmann CS (2006b) Time-frequency analysis of target detection reveals an early interface between bottom-up and top-down processes in the gamma-band. NeuroImage 29(4):1106–1116

    Article  PubMed  Google Scholar 

  • Carandini M, Heeger DJ (1994) Summation and division by neurons in primate visual cortex. Science 264(5163):1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773–782

    Article  CAS  PubMed  Google Scholar 

  • Chen AC, Herrmann CS (2001) Perception of pain coincides with the spatial expansion of electroencephalographic dynamics in human subjects. Neurosci Lett 297(3):183–186

    Article  CAS  PubMed  Google Scholar 

  • Chun MM (2000) Contextual cueing of visual attention. TRENDS Cogn Sci 4(5):170–178

    Article  PubMed  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20:1743–1755

    Article  PubMed  Google Scholar 

  • Debener S, Herrmann CS, Kranczioch C, Gembris D, Engel AK (2003) Top-down attentional processing enhances auditory evoked gamma band activity. NeuroReport 14(5):683–686

    Article  PubMed  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062

    CAS  PubMed  Google Scholar 

  • Eckstein MP, Shimozaki SS, Abbey CK (2002) The footprints of visual attention in the posner cueing paradigm revealed by classification images. J Vision 2(1):25–45

    Article  Google Scholar 

  • Fan J, Byrne J, Worden MS, Guise KG, McCandliss BD, Fossella J, Posner MI (2007) The relation of brain oscillations to attentional networks. J Neurosci 27(23):6197–6206

    Article  CAS  PubMed  Google Scholar 

  • Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54(1):137–152

    Article  CAS  PubMed  Google Scholar 

  • Fisher N (1993) Statistical analysis of circular data. Cambridge Universtity Press, New York

    Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Fründ I, Busch NA, Körner U, Schadow J, Herrmann CS (2007a) EEG oscillations in the gamma and alpha range respond differently to spatial frequency. Vision Res 47(15):2086–2098

    Article  PubMed  Google Scholar 

  • Fründ I, Busch NA, Schadow J, Körner U, Herrmann CS (2007b) From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task. BMC Neurosci 8(27)

  • Fründ I, Schadow J, Busch NA, Körner U, Herrmann CS (2007c) Evoked gamma oscillations in human scalp EEG are test–retest reliable. Clin Neurophysiol 118(1):221–227

    Article  PubMed  Google Scholar 

  • Fründ I, Busch NA, Schadow J, Gruber T, Körner U, Herrmann CS (2008) Time pressure modulates electrophysiological correlates of early visual processing. PLoS One 3(2):e1675

    Article  PubMed  Google Scholar 

  • Gruber T, Müller MM (2005) Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cereb Cortex 15(1):109–116

    Article  PubMed  Google Scholar 

  • Gruber T, Müller MM, Keil A (2002) Modulation of induced gamma band responses in a perceptual learning task in the human EEG. J Cogn Neurosci 14(5):732–744

    Article  PubMed  Google Scholar 

  • Herrmann CS, Lenz D, Junge S, Busch NA, Maess B (2004a) Memory-matches evoke human gamma-responses. BMC Neurosci 5(13)

  • Herrmann CS, Munk MH, Engel AK (2004b) Cognitive functions of gamma-band activity: memory match and utilization. TRENDS Cogn Sci 8(8):347–355

    Article  PubMed  Google Scholar 

  • Herrmann CS, Grigutsch M, Busch NA (2005) EEG oscillations and wavelet analysis. In: Handy TC (ed) Event-related potentials—a methods handbook, MIT Press, pp 229–259

  • Hoogenboom N, Schoffelen JM, Oostenveld R, Parkes LM, Fries P (2006) Localizing human visual gamma-band activity in frequency, time and space. NeuroImage 29(3):764–773

    Article  PubMed  Google Scholar 

  • Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, Schulze-Bonhage A, Kahana MJ (2003) Gamma oscillations correlate with working memory load in humans. Cereb Cortex 13:1369–1374

    Article  PubMed  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366

    Article  CAS  PubMed  Google Scholar 

  • Jirsa VK, Haken H (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D 99:503–526

    Article  Google Scholar 

  • Karakaş S, Başar E (1998) Early gamma response is sensory in origin: a conclusion based on cross-comparison of results from multiple experimental paradigms. Int J Psychophysiol 31:13–31

    Article  PubMed  Google Scholar 

  • Keil A, Müller MM, Gruber T, Wienbruch C, Elbert T (2001) Human large-scale oscillatory brain activity during an operant shaping procedure. Cogn Brain Res 12:397–407

    Article  CAS  Google Scholar 

  • Khoe W, Mitchell JF, Reynolds JH, Hillyard SA (2005) Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials. Vision Res 45(24):3004–3014

    Article  CAS  PubMed  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, New York

    Google Scholar 

  • Körner E, Gewaltig MO, Körner U, Richter A, Rodemann T (1999) A model of computation in neocortical architecture. Neural Networks 12:989–1005

    Article  PubMed  Google Scholar 

  • Lachaux JP, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L, Kahane P, Renault B (2005) The many faces of the gamma band response to complex visual stimuli. NeuroImage 25:491–501

    Article  PubMed  Google Scholar 

  • Lai G, Mangels JA (2007) Cueing effects on semantic and perceptual categorization: ERPs reveal differential effects of validity as a function of processing stage. Neuropsychologia 45:2038–2050

    Article  PubMed  Google Scholar 

  • Luck SJ, Hillyard SA, Mouloua M, Woldorff MG, Clark VP, Hawkins H (1994) Effects of spatial cuing on luminance detectability: psychophysical and electrophysiological evidence for early selection. J Exp Psychol Hum Percept Perform 20(4):887–904

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Teder-Sälejärvi W, Vazquez M, Molholm S, Foxe JJ, Javitt DC, Di Russo F, Worden MS, Hillyard SA (2006) Objects are highlighted by spatial attention. J Cogn Neurosci 18(2):298–310

    CAS  PubMed  Google Scholar 

  • Mathes B, Strüber D, Stadler MA, Basar-Eroglu C (2006) Voluntary control of Necker cuber reversals modulates the EEG delta-and gamma-band response. Neurosc Lett 402(1–2):145–149

    Article  CAS  Google Scholar 

  • Miltner WHR, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397(6718):434–436

    Article  CAS  PubMed  Google Scholar 

  • Morup M, Hansen LK, Herrmann CS, Parnas J, Arnfred SM (2006) Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29(3):938–947

    Article  PubMed  Google Scholar 

  • Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish. J Physiol, London 185:584–599

    Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Olufsen MS, Whittington MA, Camperi M, Kopell N (2003) New roles for the gamma rhythm: population tuning and preprocessing for the beta rhythm. J Comput Neurosci 14(1):33–54

    Article  PubMed  Google Scholar 

  • Rennie CJ, Wright JJ, Robinson PA (2000) Mechanisms of cortical electrical activity and emergence of gamma rhythm. J Theor Biol 205:17–35

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JH, Chelazzi L (2004) Attentional modulation of visual processing. Annu Rev Neurosci 27:611–647

    Article  CAS  PubMed  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56(1):826–840

    Article  CAS  Google Scholar 

  • Robinson PA, Wright JJ, Rennie CJ (1998) Synchronous oscillations in the cerebral cortex. Phys Rev E 57(4):4578–4588

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63(021903)

  • Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397:430–433

    Article  CAS  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430–440

    Article  CAS  PubMed  Google Scholar 

  • Schadow J, Lenz D, Thaerig S, Busch NA, Fründ I, Rieger JW, Herrmann CS (2007) Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. Int J Psychophysiol 66(1):28–36

    Article  PubMed  Google Scholar 

  • Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR (2003) Theta and gamma oscillations during encoding predict subsequent recall. J Neurosci 23(34):10809–10814

    CAS  PubMed  Google Scholar 

  • Shimozaki SS, Eckstein MP, Abbey CK (2003) Comparison of two weighted integration models for the cueing task: linear and likelihood. J Vision 3(3):209–229

    Article  Google Scholar 

  • Spencer KM, Nestor PG, Perlmutter R, Niznikiewicz MA, Klump MC, Frumin M, Shenton ME, McCarley RW (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 101(49):17288–17293

    Article  CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. TRENDS Cogn Sci 3(4):151–162

    Article  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and on-phase-locked 40 Hz visual responses in human. J Neurosci 16(13):4240–4249

    CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1997) Oscillatory γ-band (30–70 hz) activity induced by a visual search task in humans. J Neurosci 17(2):722–734

    CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced γ-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18(11):4244–4254

    CAS  PubMed  Google Scholar 

  • Tiesinga PH, Fellous JM, Salinas E, José JV, Sejnowski TJ (2004) Inhibitory synchrony as a mechanism for attentional gain modulation. J Physiol (Paris) 98:296–314

    Article  Google Scholar 

  • Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Näätänen R (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59–60

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1):155–168

    Article  CAS  PubMed  Google Scholar 

  • Vidal JR, Chaumon M, O’Regan JK, Tallon-Baudry C (2006) Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals. J Cogn Neurosci 8(11):1850–1862

    Article  Google Scholar 

  • von Stein A, Sarntheim J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38:301–313

    Article  Google Scholar 

  • Wilson HR (1999) Spikes, decisions and actions. Dynamical foundations of neuroscience. Oxford University Press, New York

    Google Scholar 

  • Yamaguchi S, Yamagata S, Kabayashi S (2000) Cerebral asymmetry of the “top-down” allocation of attention to global and local features. J Neurosci 20(RC72):1–5

    Google Scholar 

Download references

Acknowledgements

This study was supported by the German Research Foundation (DFG, Grant HE3353/2-2). The authors acknowledge the funding by the Bernstein Group for Computational Neuroscience, Magdeburg. The authors would like to thank Christian Grasmé and Toralf Neuling for help with the data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph S. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fründ, I., Schadow, J., Busch, N.A. et al. Anticipation of natural stimuli modulates EEG dynamics: physiology and simulation. Cognitive Neurodynamics 2, 89–100 (2008). https://doi.org/10.1007/s11571-008-9043-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-008-9043-3

Keywords

Navigation