Cognitive Neurodynamics

, Volume 2, Issue 2, pp 79–88

Language processing with dynamic fields

  • Peter beim Graben
  • Dimitris Pinotsis
  • Douglas Saddy
  • Roland Potthast
Research Article


We construct a mapping from complex recursive linguistic data structures to spherical wave functions using Smolensky’s filler/role bindings and tensor product representations. Syntactic language processing is then described by the transient evolution of these spherical patterns whose amplitudes are governed by nonlinear order parameter equations. Implications of the model in terms of brain wave dynamics are indicated.


Computational psycholinguistics Language processing Fock space Dynamic fields 

Supplementary material

11571_2008_9042_MOESM1_ESM.pdf (49 kb)
PDF (49 KB)


  1. Amari SI (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87CrossRefPubMedGoogle Scholar
  2. Anderson JR (1995) Cognitive psychology and its implications, 4th edn. W. H. Freeman and Company, New YorkGoogle Scholar
  3. beim Graben P (2008) Foundations of neurophysics. In: beim Graben P, Zhou C, Thiel M, Kurths J (eds) Lectures in supercomputational neuroscience: dynamics in complex brain networks. Springer Complexity Series. Springer, Berlin, pp 3–48CrossRefGoogle Scholar
  4. beim Graben P, Kurths J (2008) Simulating global properties of electroencephalograms with minimal random neural networks. Neurocomputing 71(4):999–1007CrossRefGoogle Scholar
  5. beim Graben P, Gerth S, Saddy D, Potthast R (2007) Fock space representations in neural field theories. In: Biggs N, Bonnet-Bendhia AS, Chamberlain P, Chandler-Wilde S, Cohen G, Haddar H, Joly P, Langdon S, Lunéville E, Pelloni B, Potherat D, Potthast R (eds) Proceedings of Waves 2007. The 8th international conference on mathematical and numerical aspects of waves. Department of Mathematics, University of Reading, Reading, pp 120–122Google Scholar
  6. beim Graben P, Gerth S, Vasishth S (2008) Towards dynamical system models of language-related brain potentials. Cogn Neurodynam. doi:10.1007/s11571-008-9041-5 Google Scholar
  7. Bornkessel I, Zysset S, Friederici AD, von Cramon DY, Schlesewsky M (2005) Who did what to whom? The neural basis of argument hierarchies during language comprehension. NeuroImage 26:221–233CrossRefPubMedGoogle Scholar
  8. Chomsky N (1957) Syntactic structures. Mouton, Den HaagGoogle Scholar
  9. Christiansen MH (1992) The (non)necessity of recursion in natural language processing. In: Proceedings of the 14th annual conference on Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, pp 665–670Google Scholar
  10. Christiansen MH, Chater N (1999) Toward a connectionist model of recursion in human linguistic performance. Cogn Sci 23(4):157–205CrossRefGoogle Scholar
  11. Coombes S, Lord G, Owen M (2003) Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D 178:219–241CrossRefGoogle Scholar
  12. Drenhaus H, beim Graben P, Saddy D, Frisch S (2006) Diagnosis and repair of negative polarity constructions in the light of symbolic resonance analysis. Brain Lang 96(3):255–268CrossRefPubMedGoogle Scholar
  13. Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press, PrincetonGoogle Scholar
  14. Elman JL (1995) Language as a dynamical system. In: Port RF, van Gelder T (eds) Mind as motion: explorations in the dynamics of cognition. MIT Press, Cambridge, pp 195–223Google Scholar
  15. Erlhagen W, Schöner G (2002) Dynamic field theory of movement preparation. Psychol Rev 109(3):545–572CrossRefPubMedGoogle Scholar
  16. Everett DL (2005) Cultural constraints on grammar and cognition in Pirahã – another look at the design features of human language. Curr Anthropol 46(4):621–646CrossRefGoogle Scholar
  17. Friederici AD (1995) The time course of syntactic activation during language processing: a model based on neuropsychological and neurophysiological data. Brain Lang 50:259–281CrossRefPubMedGoogle Scholar
  18. Garagnani M, Wennekers T, Pulvermuller F (2007) A neuronal model of the language cortex. Neurocomputing 70:1914–1919CrossRefGoogle Scholar
  19. Haag R (1992) Local quantum physics: fields, particles, algebras. Springer, BerlinGoogle Scholar
  20. Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9(9):416–423CrossRefPubMedGoogle Scholar
  21. Haken H (1983) Synergetics. An introduction, Springer series in synergetics, vol 1, 3rd edn. Springer, Berlin. 1st edition 1977Google Scholar
  22. Hauser MD, Chomsky N, Fitch WT (2002) The faculty of language: What is it, who has it, and how did it evolve? Science 298:1569–1579CrossRefPubMedGoogle Scholar
  23. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation. Addison–Wesley, Menlo ParkGoogle Scholar
  24. Jirsa VK (2004) Information processing in brain and behavior displayed in large-scale scalp topographies such as EEG and MEG. Int J Bifurcat Chaos 14(2):679–692CrossRefGoogle Scholar
  25. Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77(5):960–963CrossRefPubMedGoogle Scholar
  26. Kempson R, Meyer-Viol W, Gabbay D (2001) Dynamic syntax. The flow of language understanding. BlackwellGoogle Scholar
  27. Kress R (1998) Numerical analysis, graduate texts in mathematics, vol 181. Springer-Verlag, New YorkGoogle Scholar
  28. Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–205CrossRefPubMedGoogle Scholar
  29. Kutas M, Hillyard SA (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature 307:161–163CrossRefPubMedGoogle Scholar
  30. Lewis RL, Vasishth S (2006) An activation-based model of sentence processing as skilled memory retrieval. Cogn Sci 29:375–419Google Scholar
  31. Maye A, Werning M (2004) Temporal binding of non-uniform objects. Neurocomputing 58:941–948CrossRefGoogle Scholar
  32. Mizraji E (1989) Context-dependent associations in linear distributed memories. Bull Math Biol 51(2):195–205PubMedGoogle Scholar
  33. Mizraji E (1992) Vector logics: the matrix-vector representation of logical calculus. Fuzzy Sets Syst 50:179–185CrossRefGoogle Scholar
  34. Moore C, Crutchfield JP (2000) Quantum automata and quantum grammars. Theor Comput Sci 237:275–306CrossRefGoogle Scholar
  35. Noveck IA, Posada A (2003) Characterizing the time course of an implicature: an evoked potentials study. Brain Lang 85:203–210CrossRefPubMedGoogle Scholar
  36. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New YorkCrossRefGoogle Scholar
  37. Osterhout L, Holcomb PJ (1992) Event-related brain potentials elicited by syntactic anomaly. J Mem Lang 31:785–806CrossRefGoogle Scholar
  38. Schöner G, Thelen E (2006) Using dynamic field theory to rethink infant habituation. Psychol Rev 113(2):273–299CrossRefPubMedGoogle Scholar
  39. Smolensky P (1990) Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif Intell 46:159–216CrossRefGoogle Scholar
  40. Smolensky P (2006) Harmony in linguistic cognition. Cogn Sci 30:779–801CrossRefGoogle Scholar
  41. Smolensky P, Legendre G (2006) The harmonic mind. From neural computation to optimality-theoretic grammar, vol 1: cognitive architecture. MIT Press, CambridgeGoogle Scholar
  42. Stabler EP (1997) Derivational minimalism. In: Retoré C (ed) Logical aspects of comutational linguistics, Springer Lecture Notes in Computer Science, vol 1328. Springer, New York, pp 68–95CrossRefGoogle Scholar
  43. Tabor W, Juliano C, Tanenhaus MK (1997) Parsing in a dynamical system: an attractor-based account of the interaction of lexical and structural constraints in sentence processing. Lang Cogn Process 12(2/3):211–271Google Scholar
  44. Thelen E, Schöner G, Scheier C, Smith LB (2001) The dynamics of embodiment: A field theory of infant perseverative reaching. Behav Brain Sci 24:1–86CrossRefPubMedGoogle Scholar
  45. van der Velde F, de Kamps M (2006) Neural blackboard architectures of combinatorial structures in cognition. Behav Brain Sci 29:37–108PubMedGoogle Scholar
  46. Vosse T, Kempen G (2000) Syntactic structure assembly in human parsing: a computational model based on competitive inhibition and a lexicalist grammar. Cognition 75:105–143CrossRefPubMedGoogle Scholar
  47. Werning M, Maye A (2007) The cortical implementation of complex attribute and substance concepts: synchony, frames, and hierarchical binding. Chaos Complex Lett 2(2/3):435–452Google Scholar
  48. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80CrossRefPubMedGoogle Scholar
  49. Wright JJ, Rennie CJ, Lees GJ, Robinson PA, Bourke PD, Chapman CL, Gordon E, Rowe DL (2004) Simulated electrocortical activity at microscopic, mesoscopic and global scales. Int J Bifurcat Chaos 14(2):853–872CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Peter beim Graben
    • 1
  • Dimitris Pinotsis
    • 2
  • Douglas Saddy
    • 1
  • Roland Potthast
    • 2
  1. 1.School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
  2. 2.Department of MathematicsUniversity of ReadingReadingUK

Personalised recommendations