Cognitive Neurodynamics

, Volume 1, Issue 1, pp 71–84

The influences of task difficulty and response correctness on neural systems supporting fluid reasoning

  • M. Layne Kalbfleisch
  • John W. Van Meter
  • Thomas A. Zeffiro
Original paper


This functional magnetic resonance imaging (fMRI) study examined neural contributions to managing task difficulty and response correctness during fluid reasoning. Previous studies investigate reasoning by independently varying visual complexity or task difficulty, or the specific domain. Under natural conditions these factors interact in a complex manner to support dynamic combinations of perceptual and conceptual processes. This study investigated fluid reasoning under circumstances that would represent the cognitive flexibility of real life decision-making. Results from a mixed effects analysis corrected for multiple comparisons indicate involvement of cortical and subcortical areas during fluid reasoning. A 2 × 2 ANOVA illustrates activity related to variances in task difficulty correlated with increased blood oxygenation level-dependent (BOLD)-signal in the left middle frontal gyrus (BA6). Activity related to response correctness correlated with increased BOLD-signal in a larger, distributed system including right middle frontal gyrus (BA6), right superior parietal lobule (BA7), left inferior parietal lobule (BA40), left lingual gyrus (BA19), and left cerebellum (Lobule VI). The dissociation of function in left BA 6 for task difficulty and right BA6 for response correctness and the involvement of a more diffuse network involving the left cerebellum in response correctness extends knowledge about contributions of classic motor and premotor areas supporting higher level cognition.


fMRI Matrix reasoning Middle frontal gyrus Brodmann area 6 Cerebellum Fluid reasoning Cognitive flexibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–943CrossRefPubMedGoogle Scholar
  2. Bischoff-Grethe A, Ivry RB, Grafton ST (2002) Cerebellar involvement in response reassignment rather than attention. J Neurosci 22:546–53PubMedGoogle Scholar
  3. Blackwood N, Ffytche D, Simmons A, Bentall R, Murray R, Howard R (2004) The cerebellum and decision making under uncertainty. Brain Res Cogn Brain Res 20:46–3CrossRefPubMedGoogle Scholar
  4. Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153:239–45CrossRefPubMedGoogle Scholar
  5. Brett M (1999) The MNI Brain and the Talairach AtlasGoogle Scholar
  6. Christoff K, Prabhakaran V, Dorfman J, Zhao Z, Kroger JK, Holyoak KJ, Gabrieli JD (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage 14:1136–149CrossRefPubMedGoogle Scholar
  7. Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N (1993) Classical conditioning after cerebellar lesions in humans. Behav Neurosci 107:748–56CrossRefPubMedGoogle Scholar
  8. Doyon J, Owen AM, Petrides M, Sziklas V, Evans AC (1996) Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur J Neurosci 8:637–48CrossRefPubMedGoogle Scholar
  9. Duncan J (2001) An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci 2:820–29CrossRefPubMedGoogle Scholar
  10. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–83CrossRefPubMedGoogle Scholar
  11. Duncan J, Seltz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, Newell FN, Emslie H (2000) A neural basis for general intelligence. Am J Ophthalmol 130:687CrossRefPubMedGoogle Scholar
  12. Eden GF, Joseph JE, Brown HE, Brown CP, Zeffiro TA (1999) Utilizing hemodynamic delay and dispersion to detect fMRI signal change without auditory interference: the behavior interleaved gradients technique. Magn Reson Med 41:13–0CrossRefPubMedGoogle Scholar
  13. Elliott R, Frith CD, Dolan RJ (1997) Differential neural response to positive and negative feedback in planning and guessing tasks. Neuropsychologia 35:1395–404CrossRefPubMedGoogle Scholar
  14. Fiez JA (1996) Cerebellar contributions to cognition. Neuron 16:13–5CrossRefPubMedGoogle Scholar
  15. Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage: a single case study. Brain 115 Pt 1:155–78Google Scholar
  16. Fuji N, Graybiel AM (2005) Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks. Proc Natl Acad Sci 102(25):9032–037Google Scholar
  17. Geake JG, Hansen PC (2005) Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage 26(2):555–64CrossRefPubMedGoogle Scholar
  18. Goel V, Buchel C, Frith C, Dolan RJ (2000) Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage 12:504–14CrossRefPubMedGoogle Scholar
  19. Goel V, Dolan RJ (2001) Functional neuroanatomy of three-term relational reasoning. Neuropsychologia 39:901–09CrossRefPubMedGoogle Scholar
  20. Goel V, Dolan RJ (2003) Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. NeuroImage 20:2314–321CrossRefPubMedGoogle Scholar
  21. Goel V, Dolan RJ (2004) Differential involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition 93:B109–21CrossRefPubMedGoogle Scholar
  22. Goel V, Gold B, Kapur S, Houle S (1997) The seats of reason? An imaging study of deductive and inductive reasoning. Neuroreport 8:1305–310CrossRefPubMedGoogle Scholar
  23. Goel V, Gold B, Kapur S, Houle S (1998) Neuroanatomical correlates of human reasoning. J Cogn Neurosci 10:293–02CrossRefPubMedGoogle Scholar
  24. Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M (1992) Cognitive planning deficit in patients with cerebellar atrophy. Neurology 42:1493–496PubMedGoogle Scholar
  25. Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6:316–22CrossRefPubMedGoogle Scholar
  26. Graybiel AM (1998) The basal ganglia and chunking action repertoires. Neurobiol Learn Memory 70(1–):119–36CrossRefGoogle Scholar
  27. Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–790PubMedGoogle Scholar
  28. Karatekin C, Lazareff JA, Asarnow RF (2000) Relevance of the cerebellar hemispheres for executive functions. Pediatr Neurol 22:106–12CrossRefPubMedGoogle Scholar
  29. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–444PubMedGoogle Scholar
  30. Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–41CrossRefPubMedGoogle Scholar
  31. Kim SG, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265:949–51CrossRefPubMedGoogle Scholar
  32. Knauff M, Fangmeier T, Ruff CC, Johnson-Laird PN (2003) Reasoning models and images: behavioral measures and cortical activity. J Cogn Neurosci 15:559–73CrossRefPubMedGoogle Scholar
  33. Knauff M, Mulack T, Kassubek J, Salih HR, Greenlee MW (2002) Spatial imagery in deductive reasoning: a functional MRI study. Brain Res Cogn Brain Res 13:203–12CrossRefPubMedGoogle Scholar
  34. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–51CrossRefPubMedGoogle Scholar
  35. Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–85CrossRefPubMedGoogle Scholar
  36. Lazeron RH, Rombouts SA, de Sonneville L, Barkhof F, Scheltens P (2003) A paced visual serial addition test for fMRI. J Neurol Sci 213:29–4CrossRefPubMedGoogle Scholar
  37. Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills?. Behav Neurosci 100:443–54CrossRefPubMedGoogle Scholar
  38. Logan CG, Grafton ST (1995) Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proc Natl Acad Sci 92(16):7500–504CrossRefPubMedGoogle Scholar
  39. Luo Q, Perry C, Peng D, Jin Z, Xu D, Ding G, Xu S (2003) The neural substrate of analogical reasoning: an fMRI study. Brain Res Cogn Brain Res 17:527–34CrossRefPubMedGoogle Scholar
  40. Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Motor Behav 25(3):203–16CrossRefGoogle Scholar
  41. Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–61CrossRefPubMedGoogle Scholar
  42. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–50CrossRefPubMedGoogle Scholar
  43. Middleton FA, Strick PL (2002) Basal-ganglia ‘projections–to the prefrontal cortex of the primate. Cerebral Cortex 12:926–35CrossRefPubMedGoogle Scholar
  44. Molinari M, Filippini V, Leggio MG (2002) Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience 111:863–70CrossRefPubMedGoogle Scholar
  45. Molinari M, Petrosini L, Misciagna S, Leggio MG (2004) Visuospatial abilities in cerebellar disorders. J Neurol Neursurg Psychiatry 75:235–40Google Scholar
  46. Mulderink TA, Gitelman DR, Mesulam MM, Parrish TB (2002) On the use of caffeine as a contrast booster for BOLD fMRI studies. NeuroImage 15:37–4CrossRefPubMedGoogle Scholar
  47. Naglieri J (1997) The Naglieri nonverbal ability test. Psychological Corporation, San AntonioGoogle Scholar
  48. Nixon PD, Passingham RE (2000) The cerebellum and cognition: cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys. Neuropsychologia 38:1054–072CrossRefPubMedGoogle Scholar
  49. Osherson D, Perani D, Cappa S, Schnur T, Grassi F, Fazio F (1998) Distinct brain loci in deductive versus probabilistic reasoning. Neuropsychologia 36:369–76CrossRefPubMedGoogle Scholar
  50. Owen AM (2004) Working memory: imaging the magic number four. Curr Biol 14:573–74CrossRefGoogle Scholar
  51. Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping 25:46–9CrossRefPubMedGoogle Scholar
  52. Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263:1287–289CrossRefPubMedGoogle Scholar
  53. Paulus MP, Hozack N, Frank L, Brown GG (2002). Error rate and outcome predictability affect neural activation in prefrontal cortex and anterior cingulate during decision-making. Neuroimage 15(4):836–46CrossRefPubMedGoogle Scholar
  54. Petersen SE, van Mier H, Fiez JA, Raichle ME (1998) The effects of practice on the functional anatomy of task performance. PNAS 95:853–60CrossRefPubMedGoogle Scholar
  55. Petrosini L, Leggio MG, Molinari M (1998) The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol 56:191–10CrossRefPubMedGoogle Scholar
  56. Pickett ER, Kuniholm E, Protopapas A, Friedman J, Lieberman P (1998) Selective speech motor syntax and cognitive deficits associated with bilateral damage to the putamen and the head of the caudate nucleus: a case study. Neuropsychologia 36:173–88CrossRefPubMedGoogle Scholar
  57. Prabhakaran V, Rypma B, Gabrieli JD (2001) Neural substrates of mathematical reasoning: a functional magnetic resonance imaging study of neocortical activation during performance of the necessary arithmetic operations test. Neuropsychology 15:115–27CrossRefPubMedGoogle Scholar
  58. Prabhakaran V, Smith JA, Desmond JE, Glover GH, Gabrieli JD (1997) Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cogn Psychol 33:43–3CrossRefPubMedGoogle Scholar
  59. Raven JC (1947) Raven’s progressive matrices. Psychological Corporation, San AntonioGoogle Scholar
  60. Rao SM, Bobholz JA, Hammeke TA, Rosen AC, Woodley SJ, Cunningham JM, Cox RW, Stein EA, Binder JR (1997) Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport 8:1987–993CrossRefPubMedGoogle Scholar
  61. Rogers RD, Ramnani N, Mackay C, Wilson JL, Jezzard P, Carter CS, Smith SM (2004) Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 55:594–02CrossRefPubMedGoogle Scholar
  62. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–57CrossRefPubMedGoogle Scholar
  63. Ruff CC, Knauff M, Fangmeier T, Spreer J (2003) Reasoning and working memory: common and distinct neuronal processes. Neuropsychologia 41:1241–253CrossRefPubMedGoogle Scholar
  64. Schmahmann JD (2004) Disorders of the cerebellum: ataxia dysmetria of thought and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–78PubMedGoogle Scholar
  65. Schmahmann JD, Pandya DN (1995) Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett 199:175–78CrossRefPubMedGoogle Scholar
  66. Schmahmann JD, Pandya DN (1997a) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–58Google Scholar
  67. Schmahmann JD, Pandya DN (1997b) The cerebrocerebellar system. Int Rev Neurobiol 41:31–0CrossRefGoogle Scholar
  68. Schmidtke K, Manner H, Kaufmann R, Schmolck H (2002) Cognitive procedural learning in patients with fronto-striatal lesions. Learn Mem 9:419–29CrossRefPubMedGoogle Scholar
  69. Seto E, Sela G, McIlroy WE, Black SE, Staines WR, Bronskill MJ, McIntosh AR, Graham SJ (2001) Quantifying head motion associated with motor tasks used in fMRI. NeuroImage 14:284–97CrossRefPubMedGoogle Scholar
  70. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–661CrossRefPubMedGoogle Scholar
  71. Solomon PR, Stowe GT, Pendlebury WW (1989) Disrupted eyelid conditioning in a patient with damage to cerebellar afferents. Behav Neurosci 103:898–02CrossRefPubMedGoogle Scholar
  72. Stavy R, Goel V, Critchley H, Dolan R (2006) Intuitive interference in quantitative reasoning. Brain Res 1073–074:383–88Google Scholar
  73. Tanaka S, Honda M, Sadato N (2005) Modality-specific cognitive function of medial and lateral human brodmann area 6. J␣Neurosci 25:496–01CrossRefPubMedGoogle Scholar
  74. Todd JJ, Marois R (2004) Capacity limit of visual short term memory in human posterior parietal cortex. Nature 428:751–54CrossRefPubMedGoogle Scholar
  75. Topka H, Valls Sole J, Massaquoi SG, Hallett M (1993) Deficit in classical conditioning in patients with cerebellar degeneration. Brain 116:961–69CrossRefPubMedGoogle Scholar
  76. Van den Heuvel OA, Groenewegen HJ, Barkhof F, Lazeron RH, van Dyck R, Veltman DJ (2003) Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of Tower of London task. NeuroImage 18:367–74CrossRefPubMedGoogle Scholar
  77. Van Mier HI, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE (1998) Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 80:2177–199PubMedGoogle Scholar
  78. Van Mier HI, Petersen SE (2002) Role of the cerebellum in motor cognition. Ann NY Acad Sci 978:334–53CrossRefPubMedGoogle Scholar
  79. Vogel EK, Machizawa MG (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428:748–51CrossRefPubMedGoogle Scholar
  80. Wechsler D (1939) The measurement of adult intelligence. Williams and Wilkins Company, BaltimoreCrossRefGoogle Scholar
  81. Wharton CM, Grafman J, Flitman SS, Hansen EK, Brauner J, Marks A, Honda M (2000) Toward neuroanatomical models of analogy: a positron emission tomography study of analogical mapping. Cogn Psychol 40:173–97CrossRefPubMedGoogle Scholar
  82. White NM (1997) Mnemonic functions of the basal ganglia. Curr Opin Neurobiol 7:164–69CrossRefPubMedGoogle Scholar
  83. Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–882CrossRefPubMedGoogle Scholar
  84. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998a) Automated image registration: I General methods and intrasubject intramodality validation. J Comput Assist Tomo 22:139–52CrossRefGoogle Scholar
  85. Woods RP, Grafton ST, Watson JD, Sicotte NL, Mazziotta JC (1998b) Automated image registration: II Intersubject validation of linear and nonlinear models. J Comput Assist Tomog 22: 53–65Google Scholar
  86. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4:58–3CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • M. Layne Kalbfleisch
    • 1
    • 2
  • John W. Van Meter
    • 1
  • Thomas A. Zeffiro
    • 1
  1. 1.Center for Functional and Molecular ImagingGeorgetown University Medical CenterWashingtonUSA
  2. 2.Krasnow Institute for Advanced Study and College of Education and Human DevelopmentGeorge Mason UniversityFairfaxUSA

Personalised recommendations