NanoEthics

, Volume 11, Issue 1, pp 75–91 | Cite as

How Smart Grid Meets In Vitro Meat: on Visions as Socio-Epistemic Practices

Original Paper

Abstract

The production, manipulation and exploitation of future visions are increasingly important elements in practices of visioneering socio-technical processes of innovation and transformation. This becomes obvious in new and emerging science and technologies and large-scale transformations of established socio-technical systems (e.g. the energy system). A variety of science and technology studies (STS) provide evidence on correlations between expectations and anticipatory practices with the dynamics of such processes of change. Technology assessment (TA) responded to the challenges posed by the influence of visions on the processes by elaborating methodologies for a “vision assessment” as a contribution to what is now increasingly known as “hermeneutical TA”. But until now, the practical functions of visions in the processes have not been explained in a way that satisfies the empirical needs of TA’s vision assessment—that is to provide future-oriented knowledge based on the analysis of ongoing changes in the present without knowing the future outcomes. Our leading hypothesis is that we can only understand the practical roles of visions in current processes if we analyse them as socio-epistemic practices which simultaneously produce new knowledge and enable new social arrangements. We elaborate this by means of two cases: the visions of In Vitro meat and of the smart grid. Here, we interpret visioneering more in its collective dimension as a contingent and open-ended process, emerging from heterogeneous socio-epistemic practices. This paper aims at improving TA’s vision assessments and related STS research on visionary practices for real-time analysis and assessments.

Keywords

Future visions Vision assessment Visioneering Technology assessment Science and technology studies 

References

  1. 1.
    McCray WP (2012) The visioneers: how a group of elite scientists pursued space colonies, nanotechnologies, and a limitless future. Princeton University Press, PrincetonGoogle Scholar
  2. 2.
    Nordmann A (2013) Visioneering assessment: on the construction of tunnel visions for technovisionary research and policy science. Technology & Innovation Studies 9(2):89–94Google Scholar
  3. 3.
    Sand M (2016) Responsibility and visioneering—opening Pandora’s box. NanoEthics 10(1):75–86. doi:10.1007/s11569-016-0252-7 CrossRefGoogle Scholar
  4. 4.
    Alvial Palvacino C (2016) Mindful anticipation. A practice approach to the study of emergent technologies. Dissertation, University of Twente, EnschedeGoogle Scholar
  5. 5.
    Konrad K (2006) The social dynamics of expectations: the interaction of collective and actor-specific expectations on electronic commerce and interactive television. Tech Anal Strat Manag 18(3–4):429–444CrossRefGoogle Scholar
  6. 6.
    Van Lente H (1993) Promising technology. The dynamics of expectations in technological developments. Dissertation University of Twente, EnschedeGoogle Scholar
  7. 7.
    Borup M, Brown N, Konrad K, van Lente H (2006) The sociology of expectations in science and technology. Tech Anal Strat Manag 18(3–4):285–298CrossRefGoogle Scholar
  8. 8.
    Van Lente H (2012) Navigating foresight in a sea of expectations: Lessons from the sociology of expectations. Tech Anal Strat Manag 24(8):769–782Google Scholar
  9. 9.
    Grin J, Grunwald A (eds) (2000) Vision assessment: shaping technology in twenty-first century society. Towards a repertoire for technology assessment. Springer, Berlin, New YorkGoogle Scholar
  10. 10.
    Grunwald A (2012) Technikzukünfte als Medium von Zukunftsdebatten und Technikgestaltung. KIT Scientific Publishing, KarlsruheGoogle Scholar
  11. 11.
    Grunwald A (2014) The hermeneutic side of responsible research and innovation. Journal of Responsible Innovation 1(3):274–291CrossRefGoogle Scholar
  12. 12.
    Rip A, Voss J-P (2013) Umbrella terms as mediators in the governance of emerging science and technology. Science, Technology & Innovation Studies 9(2):39–59Google Scholar
  13. 13.
    Dierkes M, Hoffman U, Marz L (1996) Visions of technology. Social and institutional factors shaping the development of new technologies. Campus, Frankfurt am Main, New YorkGoogle Scholar
  14. 14.
    Mambrey P, Tepper A (2000) Technology assessment as a metaphor assessment. Visions guiding the development of information and communications. In: Grin J, Grunwald A (eds) Vision assessment: shaping technology in twenty-first century society. Towards a repertoire for technology assessment. Springer, Berlin, Heidelberg, New York, pp 33–52Google Scholar
  15. 15.
    Brown N, Rappert B, Webster A (eds) (2000) Contested futures: a sociology of prospective techno-science. Ashgate, FarnhamGoogle Scholar
  16. 16.
    Lösch A (2010) Visual dynamics: the defuturization of the popular ‘nano-discourse’ as an effect of increasing economization. In: Kaiser M, Kurath M, Maasen S, Rehmann-Sutter C (eds) Governing future technologies: nanotechnology and the rise of an assessment regime, Sociology of the Sciences Yearbook, vol 27. Springer, Dordrecht, pp 89–108CrossRefGoogle Scholar
  17. 17.
    Selin C (2007) Expectations in the emergence of nanotechnology. Sci Technol Hum Values 32(2):196–220CrossRefGoogle Scholar
  18. 18.
    Böhle K, Bopp K (2014) What a vision: the artificial companion. A piece of vision assessment including an expert survey. Science, Technology & Innovation Studies 10(1):155–186Google Scholar
  19. 19.
    Ferrari A, Coenen C, Grunwald A (2012) Visions and ethics in current discourse on human enhancement. NanoEthics 6(3):215–229CrossRefGoogle Scholar
  20. 20.
    Lösch A (2013) Vision Assessment zu Human-Enhancement-Technologien. Konzeptionelle Überlegungen zu einer Analytik von Visionen im Kontext gesellschaftlicher Kommunikationsprozesse. Technikfolgenabschätzung – Theorie und Praxis 22(1):9–16Google Scholar
  21. 21.
    Callon M (1995) Four models for the dynamics of science. In: Jasanoff S, Markle GE, Petersen JC, Pinch T (eds) Handbook of science and technology studies. Sage, Thousand Oaks, pp 29–63Google Scholar
  22. 22.
    Callon M (1999) Some elements of a sociology of translation. Domestication of the scallops and the fishermen of St. Brieuc Bay. In: Biagioli M (ed) The science studies reader. Routledge, New York, London, pp 67–83Google Scholar
  23. 23.
    Grunwald A (2015) Die hermeneutische Erweiterung der Technikfolgenabschätzung. Technikfolgenabschätzung - Theorie und Praxis 24(2):65–69Google Scholar
  24. 24.
    Adam B, Groves C (2007) Future matters: action, knowledge, ethics. Brill, Leiden, BostonCrossRefGoogle Scholar
  25. 25.
    Lösch A (2006a) Anticipating the futures of nanotechnology: visionary images as means of communication. Tech Anal Strat Manag 18(3–4):393–409CrossRefGoogle Scholar
  26. 26.
    Lösch A (2006b) Means of communicating innovations. A case study for the analysis and assessment of nanotechnology’s futuristic visions. Science, Technology & Innovation Studies 2:103–125Google Scholar
  27. 27.
    Rheinberger HJ (1997) Toward a history of epistemic things, synthesizing proteins in a test tube. Stanford Uni. Press, StandfordGoogle Scholar
  28. 28.
    Knorr-Cetina K (1997) Sociality with objects. Social relations in postsocial knowledge societies. Theory, Culture and Society 14(4):1–30CrossRefGoogle Scholar
  29. 29.
    Star SL (2010) This is not a boundary object: reflections on the origin of a concept. Science Technology Human Values 35(5):601–617CrossRefGoogle Scholar
  30. 30.
    Star SL, Griesemer JR (1999) Institutional ecology, ‘translation,’ and boundary objects: amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. In: Biagioli M (ed) The science studies reader. Routledge. New York, London, pp 505–524Google Scholar
  31. 31.
    Post, M. J. (2013) Cultured beef for food-security and the environment, https://www.youtube.com/watch?v = XnJn37jiX88 Accessed 20 July 2016
  32. 32.
    Benjaminson MA, Gilchriest JA, Lorenz M (2002) In vitro edible muscle protein production system (MPPS). Acta Astronautica 51(12):879–889. doi:10.1016/S0094-5765(02)00033-4 CrossRefGoogle Scholar
  33. 33.
    Catts O, Zurr I (2014) Growing for different ends. Int J Biochem Cell Biol 56:20–29CrossRefGoogle Scholar
  34. 34.
    O’Riordan, K., Fotopoulou, A., Stephens, N. (2016) The first bite. Imaginaries, promotional publics and the laboratory grown burger. Public Understanding of Science. doi: 10.1177/0963662516639001
  35. 35.
    Forgacs, A. (2013) The bio-printing of leather and meat: Andras Forgacs at TEDxMarin 2013 https://www.youtube.com/watch?v=x1Q2oLxEOF8
  36. 36.
    Datar, I. (2016a) In vitro meat is cultured. In: Post M., Stephens N., Datar I. (eds.) What Is In Vitro Meat? (2). Food Phreacking, Issue 2: 16–21Google Scholar
  37. 37.
    Ferrari A (2017) Nonhuman animals as food in biocapitalism. In: Nibert D (ed) Capitalism and animal oppression. Prager Press, Broomfield, CO (in press)Google Scholar
  38. 38.
    Post MJ (2012) Cultured meat from stem cells: challenges and prospects. Meat Sci 92(3):297–301CrossRefGoogle Scholar
  39. 39.
    Stephens N (2013) Growing meat in laboratories. The promise, ontology, and ethical boundary-work of using muscle cells to make food. Configurations 21(2):159–181CrossRefGoogle Scholar
  40. 40.
    Tuomisto HL, Teixeira de Mattos MJ (2011) Environmental impacts of cultured meat production. Environ Sci Technol 45(14):6117–6123. doi:10.1021/es200130u CrossRefGoogle Scholar
  41. 41.
    Mattick CS, Landis AE, Allenby BR (2015) A case for systemic environmental analysis of cultured meat. J Integr Agric 14(2):249–254CrossRefGoogle Scholar
  42. 42.
    Bonny S et al (2015) What is artificial meat and what does it mean for the future of the meat industry? J Integr Agric 14(2):255–263CrossRefGoogle Scholar
  43. 43.
    Post, M. J. (2016) In vitro meat is an emerging technology. In: Post M., Stephens N., Datar I. (eds.) What Is In Vitro Meat? (2). Food Phreacking, Issue 2: 10–15Google Scholar
  44. 44.
    Post MJ (2014) Cultured beef: medical technology to produce food. Journal of Science, Food and Agriculture 94(6):1039–1041CrossRefGoogle Scholar
  45. 45.
    Forgacs, A. (2014) The benefits of in vitro meat. Jason Point in MIT Technology Review, EmTech, September 23, 2014, https://www.youtube.com/watch?v = ujDMGOcczhY Accessed 20 July 2016
  46. 46.
    Datar, I. (2016b) On animal products without animals, Bitten: A food conversation, https://www.youtube.com/watch?v = 5FbQ89PFSsk&feature = youtube Accessed 20 July 2016
  47. 47.
    JhA, A. (2013) Synthetic meat: how the world’s costliest burger made it on to the plate, The Guardian, 5 August 2013, https://www.theguardian.com/science/2013/aug/05/synthetic-meat-burger-stem-cells. Accessed 20 July 2016
  48. 48.
    Ferrari A (2016) Envisioning the futures of animals through in vitro meat. EurSafe 2016. Book of proceedings. Wageningen Academic Publishers, Wageningen, pp 265–270Google Scholar
  49. 49.
    Driessen C, Korthals M (2012) Pig towers and in vitro meat. Disclosing moral worlds by design. Soc Stud Sci 42(6):797–820. doi:10.1177/0306312712457110 CrossRefGoogle Scholar
  50. 50.
    Jochems CEA, van der Valk JB, Stafleu FR, Baumans V (2002) The use of fetal bovine serum: ethical or scientific problem? Altern Lab Anim 30:219–227Google Scholar
  51. 51.
    Singer P (2013) The world’s first cruelty-free hamburger. The guardian. Available online at http://www.theguardian.com/commentisfree/2013/aug/05/worlds-first-cruelty-free-hamburger, checked on 6/12/2015
  52. 52.
    Strand R, The EPINET Consortium (2015) Working paper on the embedding workshops: public funding and social shaping of in vitro meat, http://www.epinet.no/sites/all/themes/epinet_bootstrap/documents/synthetic_meat_workshop.pdf
  53. 53.
    Simonsen R (2015) Eating for the future: veganism and the challenge of in vitro meat. In: Stapleton P, Byers A (eds) Biopolitics and utopia. An interdisciplinary reader. Palgrave Macmillan Singer, New York, pp 167–190Google Scholar
  54. 54.
    Miller J (2012) In vitro meat: power, authenticity and vegetarianism. Journal for Critical Animal Studies (JCAS) 10(4):41–63Google Scholar
  55. 55.
    Lösch A, Schneider C (2016) Transforming power/knowledge apparatuses: the smart grid in the German energy transition. Innovation: The European Journal of Social Science Research 29(3):262–284. doi:10.1080/13511610.2016.1154783 Google Scholar
  56. 56.
    Ramchurn SD, Vytelingum P, Rogers A, Jennings NR (2012) Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun ACM 55(4):86–97. doi:10.1145/2133806.2133825 CrossRefGoogle Scholar
  57. 57.
    B.A.U.M Consult GmbH (2012) Smart Energy made in Germany. Zwischenergebnisse der E-Energy-Modellprojekte auf dem Weg zum Internet der Energie. B.A.U.M. Consult GmbH, MünchenGoogle Scholar
  58. 58.
    BMWi (2014) Smart Energy made in Germany. Erkenntnisse zum Aufbau und zur Nutzung intelligenter Energiesysteme im Rahmen der Energiewende. Bundesministerium für Wirtschaft und Energie, BerlinGoogle Scholar
  59. 59.
    Orwat C (2011) Systemic risks in the electric power infrastructure? Technikfolgenabschätzung – Theorie und Praxis 20(3):47–55Google Scholar
  60. 60.
    Vu K, Begouic M, Novosel D (1997) Grids get smart protection and control. Computer Applications in Power, IEEE 10(4):40–44CrossRefGoogle Scholar
  61. 61.
    Schick L, Gad C (2015) Flexible and inflexible energy engagements—a study of the Danish smart grid strategy. Energy Research & Social Science 9:51–59. doi:10.1016/j.erss.2015.08.013 CrossRefGoogle Scholar
  62. 62.
    Schick L, Winthereik BR (2013) Innovating relations—or why smart grid is not too complex for the public. Science & Technology Studies 26(3):82–102Google Scholar
  63. 63.
    Miller CA, Iles A, Jones C (2013) The social dimensions of energy transitions. Science as Culture 22(2):135–148CrossRefGoogle Scholar
  64. 64.
    BMU, BMWi (2011) The Federal Government’s energy concept of 2010 and the transformation of the energy system of 2011. Federal Ministry of Economics and Technology and Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, MunichGoogle Scholar
  65. 65.
    Birnbaum, M. (2011) Germany’s ‘make-or-break’ energy experiment. The Washington Post June 10. http://www.washingtonpost.com/world/germanys-make-or-break-energy-experiment/2011/06/06/AGr2RLOH_story.html. Accessed 20 July 2016
  66. 66.
    Coats, D. (2014). What Obama could learn from Germany’s failed experiment with green energy, FoxNews.com, June 5. http://www.foxnews.com/opinion/2014/06/05/what-obama-could-learn-from-germany-failed-experiment-with-green-energy.html. Accessed 20 July 2016
  67. 67.
    Talbot D (2012) The great German energy experiment. Technol Rev 115(4):50–55Google Scholar
  68. 68.
    Büscher C, Sumpf P (2015) ‘Trust’ and ‘confidence’ as socio-technical problems in the transformation of energy systems. Energy, Sustainability and Society 5(1):34. doi:10.1186/s13705-015-0063-7 CrossRefGoogle Scholar
  69. 69.
    Covrig CF, Ardelean M, Vasiljevska J et al (2014) Smart grid projects outlook 2014. EUR – Scientific and Technical Research series. Publications Office of the European Union, LuxembourgGoogle Scholar
  70. 70.
    Nyborg S, Røpke I (2013) Constructing users in the smart grid—insights from the Danish eFlex project. Energy Efficiency 6(4):655–670. doi:10.1007/s12053-013-9210-1 CrossRefGoogle Scholar
  71. 71.
    Engels F, Münch AV (2015) The micro smart grid as a materialised imaginary within the German energy transition. Energy Research & Social Science 9:35–42. doi:10.1016/j.erss.2015.08.024 CrossRefGoogle Scholar
  72. 72.
    Goulden M, Bedwell B, Rennick-Egglestone S et al (2014) Smart grids, smart users? The role of the user in demand side management. Energy Research & Social Science 2:21–29. doi:10.1016/j.erss.2014.04.008 CrossRefGoogle Scholar
  73. 73.
    Skjølsvold TM, Ryghaug M (2015) Embedding smart energy technology in built environments: a comparative study of four smart grid demonstration projects. Indoor and Built Environment 24(7):878–890. doi:10.1177/1420326X15596210 CrossRefGoogle Scholar
  74. 74.
    Energy Supply Company (2013) Transcript of an expert interview with the head of an innovation group of one of the big German energy supply companies, quotations from the German-language transcript translated into English by the authorsGoogle Scholar
  75. 75.
    Schneider C, Lösch A (2015) What about your futures, technology assessment? An essay on how to take the visions of TA seriously, motivated by the PACITA conference. Technikfolgenabschätzung – Theorie und Praxis 24(2):70–74Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute for Technology Assessment and Systems AnalysisKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations