, Volume 8, Issue 1, pp 1–17 | Cite as

Metaphors in Nanomedicine: The Case of Targeted Drug Delivery

  • Bernadette Bensaude Vincent
  • Sacha Loeve
Original Paper


The promises of nanotechnology have been framed by a variety of metaphors, that not only channel the attention of the public, orient the questions asked by researchers, and convey epistemic choices closely linked to ethical preferences. In particular, the image of the ‘therapeutic missile’ commonly used to present targeted drug delivery devices emphasizes precision, control, surveillance and efficiency. Such values are highly praised in the current context of crisis of pharmaceutical innovation where military metaphors foster a general mobilization of resources from multiple fields of cutting-edge research. The missile metaphor, reminiscent of Paul Ehrlich’s ‘magic bullet’, has framed the problem in simple terms: how to deliver the right dose in the right place at the right moment? Chemists, physicists and engineers who design multi-functional devices operating in vitro can think in such terms, as long as the devices are not actually operating through the messy environment of the body. A close look at what has been done and what remains to be done suggests that the metaphor of the “therapeutic missile” is neither sufficient, nor even necessary. Recent developments in nanomedicine suggest that therapeutic efficacy cannot be obtained without negotiating with the biological milieu and taking advantage of what it affords. An ‘oikological’ approach seems more appropriate, more heuristic and more promising than the popular missile. It is based on the view of organism as an oikos that has to be carefully managed. The dispositions of nanocapsules have to be coupled with the affordances of the environment. As it requires dealing with nanoparticles as relational entities (defined by their potential for interactions) rather than as stable substances (defined by intrinsic properties) this metaphor eventually might well change research priorities in nanotechnology in general.


Nanomedicine Pharmacology Nanorobot Magic bullet Dispositions Affordances Efficiency Efficacy 



We are grateful to Patrick Couvreur, Florence Gazeau, Ania Servant, Cyril Bussy, and Brigitte Nerlich.

Funding Sources

The research for this paper has been conducted by the authors with the help of ANR-project Nano-2E ANR-09-NANO-001-02.


  1. 1.
    Annas G (1995) Reframing the debate on health care reform by replacing our metaphors. N Engl J Med 332:744–747CrossRefGoogle Scholar
  2. 2.
    Arrigo BA (1999) Martial metaphors and medical justice: implications for law, crime, and deviance. J Polit Mil Soc 27:307–322CrossRefGoogle Scholar
  3. 3.
    Austin JL (1962) How to do things with words. Clarendon, OxfordGoogle Scholar
  4. 4.
    Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey. Nanotechnol Law Bus 5:135–155Google Scholar
  5. 5.
    Bensaude-Vincent B, Guchet X (2007) Nanomachine: One Word for Three Different Paradigms. Technè 11:71–89.Google Scholar
  6. 6.
    Bhattacharya S (2003) Gold “nano-bullets” shoot down tumours. New Scientist. Retrieved August 20, 2012, from
  7. 7.
    Boenink M (2009) Tensions and opportunities in convergence: shifting concepts of disease in emerging molecular medicine. Nanoethics 3:243–255CrossRefGoogle Scholar
  8. 8.
    Caroll SP (2011) Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems. Evol Appl 4:184–199CrossRefGoogle Scholar
  9. 9.
    Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388CrossRefGoogle Scholar
  10. 10.
    Cheng Z, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910CrossRefGoogle Scholar
  11. 11.
    Chess R (1998) Economics of drug delivery. Pharm Res 15:172–174CrossRefGoogle Scholar
  12. 12.
    Choi C (2009) Magic nano-bullets: advances in nanotechnology could make drug delivery far more accurate and effective. Sci Am/World View. Retrieved August 20, 2012 from
  13. 13.
    Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003CrossRefGoogle Scholar
  14. 14.
    Couvreur P (2009) Super Vector !, Revue pour l’histoire du CNRS, 24. Retrieved February 10, 2012 from
  15. 15.
    Couvreur P (2010) Interview by Xavier Guchet, Sacha Loeve & Nicolas Sauret, Faculté de pharmacie de Chatenay-Malabry, 30 November 2010Google Scholar
  16. 16.
    Couvreur P, Kante B, Grislain L, Roland M, Speiser P (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci 71:1520–6017CrossRefGoogle Scholar
  17. 17.
    Couvreur P, Tulkens P, Roland M, Trouet A, Speiser P (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84:323–326CrossRefGoogle Scholar
  18. 18.
    Couvreur P, Vauthier C (2006) Nanotechnology. Intelligent design to treat complex disease. Pharm Res 23:1417–1450CrossRefGoogle Scholar
  19. 19.
    Crawford LM (2004) Remarks by Lester M. Crawford, D.V.M., Ph.D., Acting Commissioner of the FDA, before PhRMA Annual Meeting. Retrieved February 10, 2012, from
  20. 20.
    De Angelis C, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, Kotzin S, Laine C, Marusic A, Overbeke JPM, Schroeder TV, Sox HC, Van Der Weyden MB (2004) Clinical trial registration: a statement from the International Committee of Medical Journal Editors. J Am Med Assoc 1671:137–141Google Scholar
  21. 21.
    Debus AG (1991) The French Paracelsians. the chemical challenge to the medical and scientific tradition in early modern France. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Debus AG (1993) Paracelsus and the medical revolution of the renaissance; a 500th anniversary celebration. In: Debus AG (ed) Paracelsus, five hundred years; three american exhibits. National Library of Medicine, Washington, DC, p 3Google Scholar
  23. 23.
    DiMaggio P (1997) Culture and cognition. Annu Rev Sociol 23:263–288CrossRefGoogle Scholar
  24. 24.
    DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development cost. J Health Econ 22:151–185CrossRefGoogle Scholar
  25. 25.
    Downing GJ (2009) Key aspects of heath care on the path to personalized medicine. Transl Res 154:272–276CrossRefGoogle Scholar
  26. 26.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964CrossRefGoogle Scholar
  27. 27.
    Ehrlich P ([1906] 1960) Address delivered at the dedication of the Georg-Speyer-Haus. In: Himmelweit F (ed) The collected papers of Paul Ehrlich. Pergamon Press, London, pp 53–63Google Scholar
  28. 28.
    Fox Keller E (1992) Secrets of life, secrets of death: essays on language, gender and science. Routledge, New YorkGoogle Scholar
  29. 29.
    Fox Keller E (1995) Refiguring life: metaphors of twentieth-century biology. Columbia University Press, New YorkGoogle Scholar
  30. 30.
    Fox Keller E (2002) Making sense of life: explaining biological development with models, metaphors, and machines. Harvard University Press, HarvardGoogle Scholar
  31. 31.
    Gabizon AA (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7:243–254Google Scholar
  32. 32.
    Galison P (1994) The ontology of the enemy: Norbert Wiener and the cybernetic vision. Crit Inq 21:228–266CrossRefGoogle Scholar
  33. 33.
    Gaspar R (2013) Pushed off target with proteins. Nat Nanotechnol 8:79–80CrossRefGoogle Scholar
  34. 34.
    Gatenby RA (2009) A change of strategy in the war on cancer. Nature 459:508–509CrossRefGoogle Scholar
  35. 35.
    Gatenby RA, Brown J, Vincent T (2009) Lessons from applied ecology: cancer control using an evolutionary double bind. Cancer Res 69:7499–7502CrossRefGoogle Scholar
  36. 36.
    Gatenby RA, Silva AS, Gillies RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69:4894–4903CrossRefGoogle Scholar
  37. 37.
    Gazeau F (2011) Interview by B. Bensaude Vincent, Université Paris-Diderot, 29 November 2011Google Scholar
  38. 38.
    Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  39. 39.
    Goldacre B (2012) Bad Pharma: how drug companies mislead doctors and harm patients. Fourth Estate, LondonGoogle Scholar
  40. 40.
    Harney J (2004) Nano weapons join the fight against cancer—“Nanoshells” and other tools of the ultrasmall realm could improve diagnosis and treatment of tumors. Technology Review, Retrieved May 11, 2012, from
  41. 41.
    Harré R (2001) Dispositions and powers. In: Newton-Smith WH (ed) A companion to the philosophy of science. Blackwell Companions to Philosophy, Blackwell Publishers, Oxford, pp 97–101Google Scholar
  42. 42.
    Harré R (2003) The materiality of instruments in a metaphysics for experiments. In: Radder H (ed) Philosophy of scientific experimentation. University of Pittsburgh Press, Pittsburgh, pp 19–38Google Scholar
  43. 43.
    Henderson M (2009) New attack on cancer with nano-weapon. The Times, London, p 3Google Scholar
  44. 44.
    Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896CrossRefGoogle Scholar
  45. 45.
    Hoffman AS (2008) The origins and evolution of ‘controlled’ drug delivery systems. J Control Release 132:153–163CrossRefGoogle Scholar
  46. 46.
    Hofmann B (2001) The technological invention of disease. Med Humanit 27:10–19CrossRefGoogle Scholar
  47. 47.
    Holme NM, Fedotenko AI, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon P-L, Ziegler A, Müller B, Saxer T, Zumbuehl A (2012) Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotechnol 7:536–543CrossRefGoogle Scholar
  48. 48.
    Jain KK (2005) Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat 4:645–650Google Scholar
  49. 49.
    Jain RK, Stylianopoulos T (2010) Delivering nanomedicines to solid tumors. Nat Rev Clin Oncol 11:653–664CrossRefGoogle Scholar
  50. 50.
    Jones R (2004) Soft machines. Nanotechnology and life. Oxford University Press, OxfordGoogle Scholar
  51. 51.
    Kain D (2008) “Smart Bomb” Nanoparticle strategy impact metastasis. UC San Diego News Center Letter. Retrieved August 10, 2012 from
  52. 52.
    Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M, Caban S, Vural A, Pinarbasli O, Capan Y, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Andrieux K, Couvreur P, Dalkara T (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood–brain barrier and provides neuroprotection. J Neurosci 29:13761–13769CrossRefGoogle Scholar
  53. 53.
    Kopf H (1975) Charakterisierung, anwendung und eignung der Nanokapsulierung auf acrylamidbasis, zur einhüllung niedermolekolarer arzneistoffe. Dissertation n° 5458, ETH ZürichGoogle Scholar
  54. 54.
    Kopf H, Joshi RK, Soliva M, Speiser P (1976) Studium der Mizellpolymerisation in Gegenwart niedermolekularer Arzneistoffe. 1: Herstellung und Isolierung der Nanopartikel, Restmonomeren-bestimmung, physikalisch-chemische Daten. Pharm Ind 38:281–284Google Scholar
  55. 55.
    Kopf H, Joshi RK, Soliva M, Speiser P (1977) Studium der Mizellpolymerisation in Gegenwart niedermolekularer Arzneistoffe. 2: Bindungsart von inkorporierten niedermolekularen Modellarzneistoffen an Nanopartikel auf Polyacrylamid-Basis. Restmonomerenbestimmung, physikalisch-chemische Daten. Pharm Ind 39:993–997Google Scholar
  56. 56.
    Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337:738–742CrossRefGoogle Scholar
  57. 57.
    Kramer PA (1974) Albumin microspheres as vehicles for achieving specificity in drug delivery. J Pharm Sci 63:1646–1647CrossRefGoogle Scholar
  58. 58.
    Kwon IK, Lee SC, Han B, Park K (2012) Analysis of the current status of targeted drug delivery to tumors. J Control Release 164:108–114CrossRefGoogle Scholar
  59. 59.
    Lakoff G, Johnson M (1980) Metaphors we live by. University of Chicago Press, ChicagoGoogle Scholar
  60. 60.
    Loeve S, Bensaude Vincent B, Gazeau F (2013) Nanomedicine metaphors: from war to care. Emergence of an oikological approach, NanoToday, Available online 9 September 2013, ISSN 1748–0132, (
  61. 61.
    Loeve S, Normand M (2011) How to trust a molecule? The case of cyclodextrins entering the nanorealm. In: Zülsdorf TB, Coenen C, Fiedeler U, Ferrari A, Milburn C, Wienroth M (eds) Quantum engagements. Social reflections of nanoscience and emerging technologies. IOS Press/AKA Verlag, Heidelberg, pp 195–217Google Scholar
  62. 62.
    Maasen S, Weingart P (2000) Metaphors and the dynamics of knowledge. Routledge, LondonGoogle Scholar
  63. 63.
    Manish G, Vimukta S (2011) Targeted drug delivery system: a review. Res J Chem Sci 1:135–138Google Scholar
  64. 64.
    Marty JJ (1977) The preparation, purification, and properties of nanoparticles. Dissertation, Victorian College of Pharmacy, Parksville, AustraliaGoogle Scholar
  65. 65.
    Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles—a new colloidal drug delivery system. Pharm Acta Helv 53:17–23Google Scholar
  66. 66.
    Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935CrossRefGoogle Scholar
  67. 67.
    Montgomery SL (1991) Codes and combat in biomedical discourse. Sci Cult 2:341–391CrossRefGoogle Scholar
  68. 68.
    Montgomery SL (1996) The scientific voice. Guilford Press, New YorkGoogle Scholar
  69. 69.
    Morris MC (2012) Cancer et nanotechnologie. Innovation en diagnostic, vectorisation et thérapeutique. Rayonnement CNRS 58:47–57Google Scholar
  70. 70.
    Munos B (2009) Lessons for 60 years of pharmaceutical innovation. Nat Rev Drug Discov 8:959–968CrossRefGoogle Scholar
  71. 71.
    Nerlich B (2003) Tracking the fate of the metaphor ‘Silent Spring’ in British environmental discourse: Towards an evolutionary ecology of metaphor., 04. Retrieved November 12, 2012 from
  72. 72.
    Nerlich B (2005) From Nautilus to Nanobo(a)ts: the visual construction of nanoscience. AZojono: J Nanotechnol Online. Retrieved January 28, 2012 from
  73. 73.
    Nerlich B (2008) Powered by imagination: nanobots at the science photo library. Sci Cult 17:269–292CrossRefGoogle Scholar
  74. 74.
    Nerlich B (2012) Biomilitarism and nanomedicine: Evil metaphors for the good of human health? Covalence. Retrieved May 26, 2012, from
  75. 75.
    Nordmann A (2004) Smart bombs against cancer cells: images of efficiency in NanoMedicine. (Paper presented at the Conference Nanotechnology and Smart Materials for Medical Applications: From Medical Diagnostic to Therapy, Rome, November 29–30). Retrieved Febreuary 16, 2012, from
  76. 76.
    Norman DA (1990) The design of everyday things. Doubleday, New YorkGoogle Scholar
  77. 77.
    Observatory NANO (2010) Focus report: nanotechnology and therapeutic delivery. Retrieved May 11, 2012, from
  78. 78.
    Observatory NANO (2012) Final Report. Retrieved May 11, 2012, from
  79. 79.
    Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120:1–3CrossRefGoogle Scholar
  80. 80.
    Patel P (2007) New nano weapon against cancer—gold nanoparticles with branching polymers could attack tumors in multiple ways. Technol Rev. Retrieved May 14, 2012, from
  81. 81.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214Google Scholar
  82. 82.
    Perez A (2008) Les nanomédicaments s’attaquent au cancer—Plusieurs projets de recherche français confirment l’intérêt scientifique et le potentiel thérapeutique des nanomédicaments. Les Echos, 20108, 17. Retrieved August 10, 2012, from
  83. 83.
    Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915CrossRefGoogle Scholar
  84. 84.
    Pili B, Bourgaux C, Amenitsch H, Keller G, Lepêtre-Mouelhi S, Desmaële D, Couvreur P, Ollivon M (2010) Interaction of a new anticancer prodrug, gemcitabine-squalene, with a model membrane: coupled DSC and XRD study. Biochim Biophys Acta 1798:1522–1532CrossRefGoogle Scholar
  85. 85.
    Pillai O, Dhanikula AB, Panchagnula R (2008) Drug delivery: an Odyssey of 100 years. Curr Opin Chem Biol 5:439–446CrossRefGoogle Scholar
  86. 86.
    Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852CrossRefGoogle Scholar
  87. 87.
    Rasmussen A (2005) Préparer, produire, présenter des agents thérapeutiques. Histoires de l’objet médicament. In: Bonah C, Rasmussen A (eds) Histoire et médicament aux XIXe et XXe siècles. Éditions Glyphe, Paris, pp 159–188Google Scholar
  88. 88.
    Rorty R (1979) Philosophy and the mirror of nature. Princeton University Press, PrincetonGoogle Scholar
  89. 89.
    Rossi MA (2012) Targeting anti-epileptic drug therapy without collateral damage: nanocarrier-based drug delivery. Epilepsy Currents 12:199–200CrossRefGoogle Scholar
  90. 90.
    Sano K, Nakajima T, Choyke PL, Kobayashi H (2013) Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 7:717–724CrossRefGoogle Scholar
  91. 91.
    Shakeri-Zadeh A, Ali Mansoori G, Reza Hashemian A, Eshghi H, Sazgarnia A, Reza Montazebadi A (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dyn Biochem Process Biotechnol Mol Biol 4:6–12Google Scholar
  92. 92.
    Simondon G (1958) Du mode d’existence des objets techniques, 2nd edn. Aubier, ParisGoogle Scholar
  93. 93.
    Singer E (2009) Stealthy nanoparticles attack cancer cells: drugs embedded in special polymers can more effectively shrink tumors. Technol Rev, Retrieved May 14, 2012, from
  94. 94.
    Strebhardt K, Ullrich A (2008) Timeline: Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480CrossRefGoogle Scholar
  95. 95.
    Sumer B, Gao J (2008) Theranostic nanomedicine for cancer. Nanomedicine 3:137–140CrossRefGoogle Scholar
  96. 96.
    Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519CrossRefGoogle Scholar
  97. 97.
    Te Kulve H, Rip A (2013) Societal and economic dimensions of nano-enabled drug delivery. Expert Opin Drug Deliv 10:611–622CrossRefGoogle Scholar
  98. 98.
    Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63CrossRefGoogle Scholar
  99. 99.
    Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Nanotechnol 24:1211–1217Google Scholar
  100. 100.
    Warner S (2004) Diagnostics plus therapy = theranostics. Scientist 18:38–39Google Scholar
  101. 101.
    Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popović Z, Jain RK, Bawendi MG, Fukumura D (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci 108:2426–2431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.CETCOPRAParisFrance
  2. 2.Université Paris 1ParisFrance
  3. 3.IUFParisFrance

Personalised recommendations