NanoEthics

, Volume 4, Issue 1, pp 77–83 | Cite as

Nanomaterials and Effects on Biological Systems: Development of Effective Regulatory Norms

Critical Discussion Notes

Abstract

Nanoscience has enabled the understanding of organisation of the atomic and molecular world. Due to the unique chemical, electronic and magnetic properties nanomaterials have wide applications in the chemical, manufacturing, medical sector etc., Single walled carbon nanotubes, buckyballs, ZnSe quantum dots, TiO2 nanoparticle based products are nearing commercialisation. Research is on-going worldwide on suitable delivery systems for nanomaterial based drugs. Nanomaterials are highly reactive in biological systems due to the large surface area. While the benefits of nanomaterials are evident there are studies which indicate the potential risk to biological systems. Substances known to be harmless in bulk can be potentially toxic in certain fibrous and nanoparticle form. Risk assessment studies with nanomaterials largely focus on mouse models. There are very few studies on their effects on aquatic species and plants which form the largest in the productivity chain with respect to the ecological pyramid. This study reviews the research done worldwide in the area of risk assessment of nanomaterials, particularly the effects on aquatic and plant systems. Risk assessment is the foundation for regulatory decision making. A general comparison of the regulatory regime in nanotechnology is performed to understand the extent of development.

Keywords

Nanomaterials Plants Aquatic Regulation Nanotechnology Regulatory norms 

References

  1. 1.
    Adams LK, Lyon DY, McIntosh A, Alvarez PJJ (2006) Comparative cytotoxicity of nanoscale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol 54(11–12):327–334Google Scholar
  2. 2.
    Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquat Toxicol 86(3):379–387CrossRefGoogle Scholar
  3. 3.
    Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139CrossRefGoogle Scholar
  4. 4.
    Borchardt JK (2005) Nanorisks comparable to other chemical industries. Mater Today 8(12):25CrossRefGoogle Scholar
  5. 5.
    Boxall ABA, Tiede K, Chaudhury Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2(6):919–927CrossRefGoogle Scholar
  6. 6.
    Braydich-Stolle L, Hussain S, Schlager JJ, Hoffman M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419CrossRefGoogle Scholar
  7. 7.
    Chae YJ et al (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes) AquatToxicol. doi:10.1016/i.aquatox.2009.07.019
  8. 8.
    Chang Y, Chunying C, Zhen C, Huan M, Li X, Yaxin J, Hui Y, Gengmei X, Feng X, Yuliang Z, Zhifang C, Xiaohang F, Dong H, Long C, Chen W, Taotao W (2006) In situ observation of C60 (C(COOH)2)2 interacting with living cells using fluorescence microscopy. Chin Sci Bull 51(9):1060–1064CrossRefGoogle Scholar
  9. 9.
    Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF (1998) Antigenicity of fullerenes. Antibodies specific for fullerenes and their characteristics. PNAS USA 95:10809–10813CrossRefGoogle Scholar
  10. 10.
    Fudao Z, Xiumei L, Qiang X, Yujun W, Jianfeng Z (2005) Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on crops I. Characteristics of nano-composites with plant nutrients. Nanoscience 1(2):90–95Google Scholar
  11. 11.
    Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195CrossRefGoogle Scholar
  12. 12.
    Hoet PH, Bruske-Hohfeld I, Salata OV (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2(1):12CrossRefGoogle Scholar
  13. 13.
    Iam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single walled carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126Google Scholar
  14. 14.
    Ladisch MR, Huang T, Armstrong R (2005) Fundamentals of nanotechnology for agriculture. Paper 205. 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005Google Scholar
  15. 15.
    Lin D, Xing B (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  16. 16.
    Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4347–4351CrossRefGoogle Scholar
  17. 17.
    Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137CrossRefGoogle Scholar
  18. 18.
    Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976CrossRefGoogle Scholar
  19. 19.
    Mortimer M et al (2009) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology. doi:10.1016/i.tox.2009.07.007
  20. 20.
    Muller J, Huaux F, Moreau N, Misson P, Heilier JF, delos M (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221Google Scholar
  21. 21.
    Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437CrossRefGoogle Scholar
  22. 22.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823CrossRefGoogle Scholar
  23. 23.
    Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRefGoogle Scholar
  24. 24.
    Shvedova A, Castranova V, Kisin E, Berry-Schwegler D, Murria A, Gandelsman V, Maynard A, Baron P (2003) Exposure of carbon nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A 66(20):1909–1926CrossRefGoogle Scholar
  25. 25.
    Soo CH, Young LH, Yul R (2006) On biologically produced nanomaterials. Int J Nanotechnology 3(2/3):236–252Google Scholar
  26. 26.
    Tetley TD (2007) Health effects of nanomaterials. Biochem Soc Trans 35(3):527–531CrossRefGoogle Scholar
  27. 27.
    Tratnyek PG, Jonson RL (2006) Nanotechnologies for environmental clean up. Nanotoday 1(2):44–46Google Scholar
  28. 28.
    Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G (2005) Cellular uptake and toxicity of Au55 clusters. Small 1(8–9):841–844CrossRefGoogle Scholar
  29. 29.
    US Environment Protection Agency (2005) Nanotechnology white paper. External Review draft. Available from http://www.epa.gov/OSA/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf
  30. 30.
    Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefGoogle Scholar
  31. 31.
    Yasuharu N, Naoharu I (2007) Nanomaterials induce oxidized low-density lipoprotein cellular uptake in macrophages and platelet aggregation. Circ J 71(3):437–444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Rajiv Gandhi School of Intellectual Property lawIIT KharagpurKharagpurIndia

Personalised recommendations