, Volume 3, Issue 1, pp 1–16 | Cite as

Nanotechnology, Contingency and Finitude

  • Christopher GrovesEmail author
Original Paper


It is argued that the social significance of nanotechnologies should be understood in terms of the politics and ethics of uncertainty. This means that the uncertainties surrounding the present and future development of nanotechnologies should not be interpreted, first and foremost, in terms of concepts of risk. It is argued that risk, as a way of managing uncertain futures, has a particular historical genealogy, and as such implies a specific politics and ethics. It is proposed, instead, that the concepts of contingency and of finitude must be central to any understanding of the ethical significance of nanotechnologies, as these concepts can be used to understand the basis of recent work in science and technology studies, and the sociology of knowledge more widely, which details the multi-dimensional social nature of technological uncertainty.


Nanotechnology Finitude Indeterminacy Novelty Risk Uncertainty 


  1. 1.
    Adam B (1998) Timescapes of modernity: the environment and invisible hazards. Routledge, LondonGoogle Scholar
  2. 2.
    Adam B, Groves C (2007) Future matters: action, knowledge, ethics. Leiden, BrillGoogle Scholar
  3. 3.
    Aitken RJ, Chaudhry MQ et al (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Medicine-Oxford 56(5):300–306. doi: 10.1093/occmed/kql051 CrossRefGoogle Scholar
  4. 4.
    Allianz AG (2007) Small sizes that matter. Allianz AG, MunichGoogle Scholar
  5. 5.
    Amato I (1999) Nanotechnology: shaping the world atom by atom. National Science and Technology Council Committee on Technology, Washington DCGoogle Scholar
  6. 6.
    Andorno R (2004) The precautionary principle: a new legal standard for a technological age. J Int Biotechnol Law 1(1):11–19. doi: 10.1515/jibl.2004.1.1.11 CrossRefGoogle Scholar
  7. 7.
    Anton P, Silberglitt R et al (2001) The global technology revolution: bio/nano/materials trends and their synergies with information technology by 2015. RAND, (Santa Monica, CAGoogle Scholar
  8. 8.
    Arnall A, Parr D (2004) Moving the nanoscience and technology (NST) debate forwards: short-term impacts, long-term uncertainty and the social constitution. In: Nanotechnologies: a preliminary risk analysis. European Commission. Retrieved 10/04/08 from
  9. 9.
    Barry A (2001) Political machines: governing a technological society. Athlone, LondonGoogle Scholar
  10. 10.
    Bauman Z (2005) Liquid life. Polity Press, CambridgeGoogle Scholar
  11. 11.
    Beck U (1992) Risk society: towards a new modernity. Sage Publications, LondonGoogle Scholar
  12. 12.
    Beck U (1996) Wissen oder Nicht-Wissen? Zwei Pespektiven reflexiver Modernisierung. In: Beck U, Giddens A, Lash S (eds) Reflexive Modernisierung. Frankfurt a. M., Suhrkamp, pp 289–315Google Scholar
  13. 13.
    Beck U (2005) Power in the global age: a new global political economy. Polity, CambridgeGoogle Scholar
  14. 14.
    Bernstein P (1996) Against the Gods: the remarkable story of risk. Chichester, WileyGoogle Scholar
  15. 15.
    Brown N, Michael M (2003) A sociology of expectations: retrospecting prospects and prospecting retrospects. Technol Anal Strateg Manage 15(1):3–18. doi: 10.1080/0953732032000046024 CrossRefGoogle Scholar
  16. 16.
    Calkins DR, Dixon RL et al (1980) Identification, characterization and control of potential human carcinogens: a framework for federal decision-making. J Natl Cancer Inst 64:169–176Google Scholar
  17. 17.
    Chhabra R, Sharma J et al (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6(5):978–983. doi: 10.1021/nl060212f CrossRefGoogle Scholar
  18. 18.
    Dannreuther C, Lekhi R (2000) Globalization and the political economy of risk. Rev Int Polit Econ 7(4):574–594. doi: 10.1080/096922900750034554 CrossRefGoogle Scholar
  19. 19.
    de S. Cameron NM (2006) Nanotechnology and the human future: policy, ethics, and risk. Ann N Y Acad Sci 1093:280–300. doi: 10.1196/annals.1382.019 CrossRefGoogle Scholar
  20. 20.
    Downey GL (1995) The world of industry-university-government: reimagining R&D as America. In: Marcus GE (ed) Technoscientific imaginaries: conversations, profiles and memoirs. University of Chicago Press, Chicago, pp 197–226Google Scholar
  21. 21.
    Drexler KE (2006) Nanotechnology: From Feynman to Funding. In: Hunt G, Mehta MD (eds) Nanotechnology: Risk, Ethics and Law. Earthscan, London, pp 25–34Google Scholar
  22. 22.
    Dupuy JP (2007) Some pitfalls in the philosophical foundations of nanoethics. J Med Philos 32(3):237–261. doi: 10.1080/03605310701396992 CrossRefGoogle Scholar
  23. 23.
    ETC Group (2003) The big down: from Genomes to AtomsGoogle Scholar
  24. 24.
    ETC Group (2005) Nanotech’s “Second Nature” patents: implications for the Global SouthGoogle Scholar
  25. 25.
    Feenberg A (1999) Questioning technology. London, RoutledgeGoogle Scholar
  26. 26.
    Fischer F (2005) Are scientists irrational? Risk assessment in practical reason. In: Leach M, Scoones I, Wynne B (eds) Science and citizens: globalization and the challenge of engagement. Zed Books, London, pp 54–65Google Scholar
  27. 27.
    Funtowicz SO, Ravetz JR (1990) Uncertainty and quality in science for policy. Kluwer, DordrechtGoogle Scholar
  28. 28.
    Gavelin K, Wilson R et al (2007) Democratic technologies? The final report of the Nanotechnology Engagement Group (NEG). London, InvolveGoogle Scholar
  29. 29.
    Gross M (2007) The unknown in process - dynamic connections of ignorance, non-knowledge and related concepts. Curr Sociol 55:742–759CrossRefGoogle Scholar
  30. 30.
    Hacking I (1990) The taming of chance. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Hacking I (1986) Culpable ignorance of interference effects. In: MacLean D (ed) Values at risk. Rowman and Allanheld, Totowa NJ, pp 136–154Google Scholar
  32. 32.
    Hansson SO (1996) Decision making under great uncertainty. Philos Soc Sci 26:369–386. doi: 10.1177/004839319602600304 CrossRefGoogle Scholar
  33. 33.
    Hansson SO (2000) Seven myths of risk. Stockholm thirty years on. Paper presented at Progress achieved and challenges ahead in international environmental co-operation, Swedish Ministry of the Environment, 17–18 June 2000Google Scholar
  34. 34.
    Hansson SO (2002) Uncertainties in the knowledge society. Int Soc Sci J 54(1):39. doi: 10.1111/1468-2451.00357 CrossRefGoogle Scholar
  35. 35.
    Hansson SO (2004) Weighing risks and benefits. Topoi-an Int Rev Philos 23:145–152Google Scholar
  36. 36.
    Hegel GWF (2004) Science of logic. Routledge, LondonGoogle Scholar
  37. 37.
    Herrick C, Jamieson D (1995) The social construction of acid rain. Glob Environ Change 5(2):105–112. doi: 10.1016/0959-3780(95) 00016-H CrossRefGoogle Scholar
  38. 38.
    Horlick-Jones T (2000) Towards a non-reductionistic risk analysis. ESRC End of Award Report L211272006.Google Scholar
  39. 39.
    Hunt G (2006) The global ethics of nanotechnology. In: Hunt G, Mehta MD (eds) Nanotechnology: risk, ethics and law. London, Earthscan, pp 183–195Google Scholar
  40. 40.
    International Centre for Technology Assessment (ICTA) (2008) Principles for the oversight of nanotechnologies and nanomaterials. Retrieved 13/03/08 from
  41. 41.
    Jasanoff S (2005) Let them eat cake: GM foods and the democratic imagination. In: Leach M, Scoones I, Wynne B (eds) Science and citizens: globalization and the challenge of engagement. Zed Books, London, pp 183–198Google Scholar
  42. 42.
    Jones R (2004) Soft machines: nanotechnology and life. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Kaiser M (1997) The precautionary principle and its implications for science. Found Sci 9:201–105. doi: 10.1023/A:1009641701933 CrossRefGoogle Scholar
  44. 44.
    Kass LR (ed) (2003) Beyond therapy: biotechnology and the pursuit of happiness. President’s Council on Bioethics, Washington DCGoogle Scholar
  45. 45.
    Kearnes M (2006) Chaos and control: nanotechnology and the politics of emergence. Paragraph 29(2):57–80. doi: 10.3366/prg.2006.0014 CrossRefGoogle Scholar
  46. 46.
    Kearnes M, Grove-White R et al (2006) From bio to nano: learning lessons from the UK agricultural biotechnology controversy. Sci Cult 15(4):291–307. doi: 10.1080/09505430601022619 CrossRefGoogle Scholar
  47. 47.
    Kearnes M, Macnaghten P et al (2006) Governing at the nanoscale: people, policies and emerging technologies. Demos, LondonGoogle Scholar
  48. 48.
    Kearnes M, Wynne B (2007) On nanotechnology and ambivalence: the politics of enthusiasm. Nanoethics 1:131–142. doi: 10.1007/s11569-007-0014-7 CrossRefGoogle Scholar
  49. 49.
    Keulartz J, Schermer M et al (2004) Ethics in technological culture: a programmatic proposal for a pragmatist approach. Sci Technol Human Values 29(3):3–29. doi: 10.1177/0162243903259188 CrossRefGoogle Scholar
  50. 50.
    Klamer A, Leonard TC (1994) So what's an economic metaphor? In: Mirowski P (ed) Natural images in economic thought. Cambridge University Press, Cambridge, pp 20–54Google Scholar
  51. 51.
    Knight FH (1921) Risk, uncertainty and profit. Houghton Mifflin, Boston, MAGoogle Scholar
  52. 52.
    Lemley MA (2005) Patenting nanotechnology. Stanford Law Rev 58(2):601–630Google Scholar
  53. 53.
    Lopez J (2004) Bridging the gaps: science fiction in nanotechnology. Hyle 10(2):129–152Google Scholar
  54. 54.
    Macoubrie J (2006) Nanotechnology: public concerns, reasoning and trust in government. Public Underst Sci 15:221–241. doi: 10.1177/0963662506056993 CrossRefGoogle Scholar
  55. 55.
    Marchant GE (2003) From general policy to legal rule: aspirations and limitations of the precautionary principle. Environ Health Perspect 111(14):1799–1803Google Scholar
  56. 56.
    Marris P (1996) The politics of uncertainty: attachment in private and public life. Routledge, London; New YorkGoogle Scholar
  57. 57.
    Meyer G, Folker AP et al (2005) The factualization of uncertainty: risk, politics, and genetically modified crops—a case of rape. Agric Human Values 22(2):235–242. doi: 10.1007/s10460-004-8283-z CrossRefGoogle Scholar
  58. 58.
    National Science and Technology Council (NSTC) (2006) Environmental, health and safety research needs for engineered nanoscale materials. National Nanotechnology Coordination Office, Arlington, VAGoogle Scholar
  59. 59.
    Nelkin D (1975) The political impact of technical expertise. Soc Stud Sci 5:35–54. doi: 10.1177/030631277500500103 CrossRefGoogle Scholar
  60. 60.
    O'Neill J, Holland A et al (2008) Environmental values. Routledge, AbingdonGoogle Scholar
  61. 61.
    Peterson M (2007) On multi-attribute risk analysis. In: Lewens T (ed) Risk: philosophical perspectives. Routledge, London, pp 68–83Google Scholar
  62. 62.
    Pidgeon N, Rodgers-Hayden T (2007) Opening up nanotechnology dialogue with the publics: risk communication or ‘upstream engagement’? Health Risk Soc 9(2):191–210. doi: 10.1080/13698570701306906 CrossRefGoogle Scholar
  63. 63.
    Plutowski U, Jester SS et al (2007) DNA-based self-Sorting of nanoparticles on gold surfaces. Adv Mater 19(15):1951–1956. doi: 10.1002/adma.200602169 CrossRefGoogle Scholar
  64. 64.
    Powell MC (2007) New risk or old risk, high risk or no risk? How scientists' standpoints shape their nanotechnology risk frames. Health Risk Soc 9(2):173–190. doi: 10.1080/13698570701306872 CrossRefGoogle Scholar
  65. 65.
    Puchner EM, Kufer SK et al (2008) Nanoparticle self-assembly on a DNA-Scaffold written by single-molecule cut-and-paste. Nano Lett 8(11):3692–3695. doi: 10.1021/nl8018627 CrossRefGoogle Scholar
  66. 66.
    Ravetz JR (1993) The sin of science: ignorance of ignorance. Knowledge: creation, diffusion. Utilization 15(12):157–165Google Scholar
  67. 67.
    Renn O, Roco MC (2006) Nanotechnology and the need for risk governance. J Nanopart Res 8(2):153–191. doi: 10.1007/s11051-006-9092-7 CrossRefGoogle Scholar
  68. 68.
    Rip A (2006) The tension between fiction and precaution in nanotechnology. In: Fisher E, Jones J, von Schomberg R (eds) Implementing the precautionary principle: perspectives and prospects. Edward Elgar, Cheltenham, pp 270–283Google Scholar
  69. 69.
    Roco MC (2004) Nanoscale science and engineering: unifying and transforming tools. AIChE J 50(5):890–897. doi: 10.1002/aic.10087 CrossRefGoogle Scholar
  70. 70.
    Roco MC, Bainbridge WS (2001) Societal implications of nanoscience and nanotechnology. SpringerGoogle Scholar
  71. 71.
    Roco MC, Bainbridge WS (2003) Converging technologies for improving human performance: nanotechnology, biotechnology, information technology and cognitive science. Kluwer Academic Publishers, Dordrecht/LondonGoogle Scholar
  72. 72.
    Rose N (1999) The powers of freedom: reframing political thought. Cambridge University Press, CambridgeGoogle Scholar
  73. 73.
    Rose N (2001) The politics of life itself. Theory Cult Soc 18(1):1–30. doi: 10.1177/02632760122051607 CrossRefGoogle Scholar
  74. 74.
    Sarewitz D (2004) How science makes environmental controversies worse. Environ Sci Policy 7:385–403. doi: 10.1016/j.envsci.2004.06.001 CrossRefGoogle Scholar
  75. 75.
    Schummer J (2001) Ethics of chemical synthesis. Hyle 7(2):103–124Google Scholar
  76. 76.
    Stirling A (2007) Risk, precaution and science: towards a more constructive policy debate. EMBO Rep 8(4):309–315. doi: 10.1038/sj.embor.7400953 CrossRefGoogle Scholar
  77. 77.
    Tallacchini M (2004) Before and beyond the precautionary principle: epistemology of uncertainty in science and the law. Toxicol Appl Pharmacol 197(3):646–651Google Scholar
  78. 78.
    Throne-Holst H, Stø E (2008) Who should be precautionary? Governance of nanotechnology in the risk society. Technol Anal Strateg Manage 20(1):99–112. doi: 10.1080/09537320701726726 CrossRefGoogle Scholar
  79. 79.
    UK Government (2003) The future of air transport. London, Department for TransportGoogle Scholar
  80. 80.
    Uskokovic V (2007) Nanotechnologies: what we do not know. Technol Soc 29(1):43–61. doi: 10.1016/j.techsoc.2006.10.005 CrossRefGoogle Scholar
  81. 81.
    Vaidhyanathan S (2006) Nanotechnologies and the law of patents: a collision course. In: Hunt G, Mehta MD (eds) Nanotechnology: risk, ethics and law. Earthscan, London, pp 225–236Google Scholar
  82. 82.
    Walker WE, Harremoës P et al (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integrated Assess 4(1):5–17. doi: 10.1076/iaij. CrossRefGoogle Scholar
  83. 83.
    Webster A (2004) Risk, science and policy: researching the social management of uncertainty. Policy Stud 25(1):5–15. doi: 10.1080/0144287042000208206 CrossRefGoogle Scholar
  84. 84.
    Wolff J (2006) Risk, fear, shame, blame and the regulation of public safety. Econ Philos 22(3):409–427. doi: 10.1017/S0266267106001040 CrossRefGoogle Scholar
  85. 85.
    Wynne B (1992) Uncertainty and environmental learning - reconceiving science and policy in the preventive paradigm. Global Environ Change 2(2):111–127CrossRefGoogle Scholar
  86. 86.
    Wynne B (2002) Risk and environment as legitimatory discourses of technology: reflexivity inside out? Curr Sociol 50(3):459–477. doi: 10.1177/0011392102050003010 CrossRefGoogle Scholar
  87. 87.
    Wynne B (2005) Risk as globalizing 'democratic' discourse? Framing subjects and citizens. In: Leach M, Scoones I, Wynne B (eds) Science and citizens: globalization and the challenge of engagement. Zed Books, London, pp 66–82Google Scholar
  88. 88.
    Žižek S (1989) Tarrying with the negative: Kant, Hegel and the critique of ideology. Duke University Press, DurhamGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.ESRC Centre for Business Relationships, Accountability, Sustainability and SocietyCardiff UniversityCardiffUK

Personalised recommendations