Genomic Medicine

, Volume 1, Issue 1–2, pp 29–33 | Cite as

Searching for potential microRNA-binding site mutations amongst known disease-associated 3′ UTR variants

  • Nadia Chuzhanova
  • David N. Cooper
  • Claude Férec
  • Jian-Min ChenEmail author
Open Access
Research Article


The 3′ untranslated regions (3′ UTRs) of human protein-coding genes play a pivotal role in the regulation of mRNA 3′ end formation, stability/degradation, nuclear export, subcellular localisation and translation, and hence are particularly rich in cis-acting regulatory elements. One recent addition to the already large repertoire of known cis-acting regulatory elements are the microRNA (miRNA) target sites that are present in the 3′ UTRs of many human genes. miRNAs post-transcriptionally down-regulate gene expression by binding to complementary sequences on their cognate target mRNAs, thereby inducing either mRNA degradation or translational repression. To date, only one disease-associated 3′ UTR variant (in the SLITRK1 gene) has been reported to occur within a bona fide miRNA binding site. By means of sequence complementarity, we have performed the first systematic search for potential miRNA-target site mutations within a set of 79 known disease-associated 3′ UTR variants. Since no variants were found that either disrupted or created binding sites for known human miRNAs, we surmise that miRNA-target site mutations are not likely to represent a frequent cause of human genetic disease.


Cis-acting regulatory elements Human inherited disease MicroRNA MiRNA target site mutation 3′ Untranslated region 3′ UTR 



Left arm of the ‹spacer’ sequence between the upstream core polyadenylation signal and the pre-mRNA cleavage site




Upstream core polyadenylation signal


Upstream sequence between the translational termination codon and the UCPAS

3′ UTR

3′ Untranslated region



This work was performed during early 2006 while JMC was a visiting Professor of Genetics supported by the Ministère de la Jeunesse, de l’Éducation Nationale et de la Recherche, France. This work was supported by the INSERM (Institut National de la SantÉ et de la Recherche MÉdicale), France.


  1. Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS 4th, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Sestan N, State MW (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310:317–320PubMedCrossRefGoogle Scholar
  2. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662PubMedCrossRefGoogle Scholar
  3. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910PubMedCrossRefGoogle Scholar
  4. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770PubMedCrossRefGoogle Scholar
  5. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85PubMedPubMedCentralCrossRefGoogle Scholar
  6. Campa D, Zienolddiny S, Maggini V, Skaug V, Haugen A, Canzian F (2004) Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 25:229–235PubMedCrossRefGoogle Scholar
  7. Chen JM, Férec C, Cooper DN (2006a) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: general principles and overview. Hum Genet 120:1–21CrossRefGoogle Scholar
  8. Chen JM, Férec C, Cooper DN (2006b) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3′ UTR variants. Hum Genet 120:301–333Google Scholar
  9. Cox DG, Pontes C, Guino E, Navarro M, Osorio A, Canzian F, Moreno V, Bellvitge Colorectal Cancer Study Group (2004) Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. Br J Cancer 91:339–343Google Scholar
  10. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310:1817–1821PubMedCrossRefGoogle Scholar
  11. Garner C, Best S, Menzel S, Rooks H, Spector TD, Thein SL (2005) Two candidate genes for low platelet count identified in an Asian Indian kindred by genome-wide linkage analysis: glycoprotein IX and thrombopoietin. Eur J Hum Genet 14:101–108Google Scholar
  12. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144PubMedPubMedCentralCrossRefGoogle Scholar
  13. Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hong LE, Wonodi I, Avila MT, Buchanan RW, McMahon RP, Mitchell BD, Stine OC, Carpenter WT Jr, Thaker GK (2005) Dihydropyrimidinase-related protein 2 (DRP-2) gene and association to deficit and nondeficit schizophrenia. Am J Med Genet B Neuropsychiatr Genet 136:8–11CrossRefGoogle Scholar
  15. Jankovic L, Dimovski AJ, Kollia P, Karageorga M, Loukopoulos D, Huisman TH (1991) A C→G mutation at nt position 6 3′ to the terminating codon may be the cause of a silent beta-thalassemia. Int J Hematol 54:289–293PubMedGoogle Scholar
  16. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363PubMedPubMedCentralCrossRefGoogle Scholar
  17. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, Yolken RH (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5:142–149PubMedCrossRefGoogle Scholar
  18. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173PubMedCrossRefGoogle Scholar
  19. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178PubMedPubMedCentralCrossRefGoogle Scholar
  20. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500PubMedCrossRefGoogle Scholar
  21. Krutzfeldt J, Poy MN, Stoffel M (2006) Strategies to determine the biological function of microRNAs. Nat Genet 38(Suppl 1):S14–S19PubMedCrossRefGoogle Scholar
  22. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedCrossRefGoogle Scholar
  23. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  24. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  25. Maragoudaki E, Vrettou C, Kanavakis E, Traeger-Synodinos J, Metaxotou-Mavrommati A, Kattamis C (1998) Molecular, haematological and clinical studies of a silent beta-gene C→G mutation at 6 bp 3′ to the termination codon (+1480 C→G) in twelve Greek families. Br J Haematol 103:45–51PubMedCrossRefGoogle Scholar
  26. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y, Kuroda S (2003) The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol Psychiatry 53:571–576PubMedCrossRefGoogle Scholar
  27. Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11:1753–1761PubMedPubMedCentralCrossRefGoogle Scholar
  28. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl 1):S8–S13PubMedCrossRefGoogle Scholar
  29. Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Dev Biol 267:529–535PubMedCrossRefGoogle Scholar
  30. Robins H, Press WH (2005) Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs. Proc Natl Acad Sci USA 102:15557–15562PubMedPubMedCentralCrossRefGoogle Scholar
  31. Robins H, Li Y, Padgett RW (2005) Incorporating structure to predict microRNA targets. Proc Natl Acad Sci USA 102:4006–4009PubMedPubMedCentralCrossRefGoogle Scholar
  32. Sgourou A, Papachatzopoulou A, Psiouri L, Antoniou M, Zoumbos N, Gibbs R, Athanassiadou A (2002) The beta-globin C→G mutation at 6 bp 3′ to the termination codon causes beta-thalassaemia by decreasing the mRNA level. Br J Haematol 118:671–676PubMedCrossRefGoogle Scholar
  33. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524PubMedCrossRefGoogle Scholar
  34. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345PubMedPubMedCentralCrossRefGoogle Scholar
  35. Yang M, Li Y, Padgett RW (2005) MicroRNAs: small regulators with a big impact. Cytokine Growth Factor Rev 16:387–393PubMedCrossRefGoogle Scholar
  36. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141PubMedPubMedCentralCrossRefGoogle Scholar
  37. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220PubMedCrossRefGoogle Scholar
  38. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Nadia Chuzhanova
    • 1
  • David N. Cooper
    • 1
  • Claude Férec
    • 2
    • 3
    • 4
    • 5
  • Jian-Min Chen
    • 2
    • 3
    • 4
    Email author
  1. 1.Institute of Medical GeneticsCardiff UniversityCardiffUK
  2. 2.INSERM, U613BrestFrance
  3. 3.Faculté de Médecine de Brest et des Sciences de la SantéUniversité de Bretagne OccidentaleBrestFrance
  4. 4.Etablissement Français du Sang – BretagneBrestFrance
  5. 5.CHRU Brest, Hôpital MorvanLaboratoire de Génétique Moléculaire et d’HistocompatibilitéBrestFrance

Personalised recommendations