ANNALI DELL'UNIVERSITA' DI FERRARA

, Volume 58, Issue 2, pp 359–369

Multiple positive solutions for fractional differential systems

Open Access
Article

Abstract

In this paper, we study the existence of positive solution to boundary value problem for fractional differential system
$$\left\{\begin{array}{ll}D_{0^+}^\alpha u (t) + a_1 (t) f_1 (t, u (t), v (t)) = 0,\;\;\;\;\;\;\;\quad t \in (0, 1),\\D_{0^+}^\alpha v (t) + a_2 (t) f_2 (t, u (t), v (t)) = 0,\;\;\;\;\;\;\;\quad t \in (0, 1), \;\; 2 < \alpha < 3,\\u (0)= u' (0) = 0, \;\;\;\; u' (1) - \mu_1 u' (\eta_1) = 0,\\v (0)= v' (0) = 0, \;\;\;\; v' (1) - \mu_2 v' (\eta_2) = 0,\end{array}\right.$$
where \({D_{0^+}^\alpha}\) is the Riemann-Liouville fractional derivative of order α. By using the Leggett-Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.

Keywords

Cone Multi point boundary value problem Fixed point theorem Riemann-Liouville fractional derivative 

Mathematical Subject Classification

47H10 26A33 34A08 

References

  1. 1.
    El-Sayed A.M.A.: Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal. 33, 181–186 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Kilbas A.A., Trujillo J.J.: Differential equations of fractional order: Methods, results and problems I. Appl. Anal. 78, 153–192 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kilbas A.A., Trujillo J.J.: Differential equations of fractional order: Methods, results and problems II. Appl. Anal. 81, 435–493 (2002)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Agarwal R.P., Benchohra M., Hamani S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Lakshmikantham V., Leela S., Devi J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)MATHGoogle Scholar
  6. 6.
    Lakshmikantham V., Vatsala A.S.: Basic theory of fractional differential equations. Nonlinear Anal. TMA 69(8), 2677–2682 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Podlubny I.: Fractional Differential Equations. Academic Press, New York (1999)MATHGoogle Scholar
  8. 8.
    Samko G., Kilbas A., Marichev O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)MATHGoogle Scholar
  9. 9.
    Saadi A., Benbachir M.: Positive solutions for three-point nonlinear fractional boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2, 1–19 (2011)MathSciNetGoogle Scholar
  10. 10.
    Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  11. 11.
    Leggett R.W., Williams L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673–688 (1979)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesRazi UniversityKermanshahIran

Personalised recommendations