Approximation of fractional derivatives via Gauss integration

Article

Abstract

This paper considers the approximations of three classes of fractional derivatives (FD) using modified Gauss integration (MGI) and Gauss-Laguerre integration (GLI). The main solutions of these fractional derivatives depend on the inverse of Laplace transforms, which are handled by these procedures. In the modified form of the integration, the weights and nodes are obtained by means of a difference equation that, gives a proper approximation form for the inverse of Laplace transform and hence the fractional derivatives. Theorems are established to indicate the degree of exactness and boundary of the error of the solutions. Numerical examples are given to illuminate the results of the application of these methods.

Keywords

Fractional derivative Laplace transform Gauss quadrature 

Mathematics Subject Classification (2010)

26A33 44A10 41A55 

References

  1. 1.
    Hashemiparast, S.M., Fallahgoul, H.: Approximation of Laplace transform of fractional derivatives via Clenshaw-Curtis integration. Int. Jour. Comp. Math. 78, 1224–1238 (2011). doi:10.1080/00207160.2010.499935 CrossRefGoogle Scholar
  2. 2.
    Hashemiparast S.M.: Numerical integration using local Taylor expansions in nodes. Appl. Math. Comp. 192, 332–336 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hashemiparast S.M., Eslahchi M.R., Dehghan M.: Determination of nodes in numerical integration rules using difference equations. Appl. Math. Comp. 176, 117–122 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ross B.: Fractional Caculus and its Application. Springer, Berlin (1974)Google Scholar
  5. 5.
    Samko S., Kilbas A., Marichev O.: Fractional Integral and Derivative-Theory and Applications. Gordon and Breach, New York (1993)Google Scholar
  6. 6.
    Podlubny I.: Fractional Differential Equations. Academic Press, London (1999)MATHGoogle Scholar
  7. 7.
    Szego G.: Orthogonal Polynomials, vol. 23, 4th edn. AMS Coll. Publ., New York (1975)Google Scholar
  8. 8.
    Shen, J., Tang, T., Wang, L.: Spectral Methods Algorithem, Analysis and ApplicationsGoogle Scholar
  9. 9.
    Atkinson K., Han W.: Theoritical Numerical Analysis, 2nd edn. Springer, Berlin (2005)CrossRefGoogle Scholar
  10. 10.
    Temme N.M.: Gamma Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, London (1996)Google Scholar
  11. 11.
    Cafagna, D.: Fractional Calculus: A Mathematical tool from the past for present engineers. IEEE Industrial Electronics Magazine (Summer) 35–40 (2007)Google Scholar
  12. 12.
    Odibat Z.: Approximations of fractional integrals and Caputo fractional drivatives. App. Math. Compu. 178, 527–533 (2006)MathSciNetMATHGoogle Scholar
  13. 13.
    Gelfand, I.M., Shilov, G.E.: Generalized Functions. Nauka, Moscow 1 (1959)Google Scholar
  14. 14.
    Anastasio T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybernet 72, 69–79 (1994)CrossRefGoogle Scholar
  15. 15.
    Mainardi F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fract. 9, 146–177 (1996)Google Scholar
  16. 16.
    Maria da Graca M., Duarte F.B.M., Tenreiro Machado J.A.: Fractional dynamics in the trajectory control of redundant manipulators. Commun. Nonlinear Sci. Numer. Simulat. 13, 1836–1844 (2008)CrossRefGoogle Scholar
  17. 17.
    Westerlund S.: Dead Matter has Memory Causal Consulting. Kalmar, Sweden (2002)Google Scholar
  18. 18.
    Oldham K., Spanier J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, London (1974)Google Scholar
  19. 19.
    Miller K., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATHGoogle Scholar
  20. 20.
    Hasegawa, T., Sugiura, H.: Uniform approximation to fractional derivatives of functions of algebric singularity. J. Comp. Appl. Math. doi:10.1016/j.cam2008.09.018
  21. 21.
    Hasegawa T., Sugiura H.: Quadrature rule for Abel‘s equations: uniformly approximation fractional derivatives. J. Comp. Appl. Math. 223, 459–468 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Tenreiro Machado J.A.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun Nonlinear Sci. Numer Simulat. 14, 3492–3497 (2009)CrossRefGoogle Scholar
  23. 23.
    Tenreiro Machado J., Kiryakova V., Mainardi F.: Recent history of fractional calculus. Commun. Nonlinear. Sci. Numer. Simulat. 16, 1140–1153 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 2011

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceK. N. Toosi University of TechnologyTehranIran

Personalised recommendations