, Volume 56, Issue 1, pp 77–89 | Cite as

On a continued fraction of order six

  • K. R. Vasuki
  • N. Bhaskar
  • G. Sharath


In this paper, we derive certain identities for the following continued of order six:

$$ X(q)\,:=\,q^{1/4} \frac{\sum\nolimits_{n=0}^\infty\frac{(-q;q^2)_nq^{n^2+2n}}{(q^4;q^4)_n}}{\sum\nolimits_{n=0}^{\infty} \frac{q^{n^2}}{(q^2;q^2)_n}} $$
$$ =\,\frac{q^{-1/4}(1-q^2)}{(1-q^{3/2})} _+\frac{(1-q^{1/2})(1-q^{7/2})}{q^{1/2}(1-q^{3/2})(1+q^3)} _+\frac{(1-q^{5/2})(1-q^{13/2})}{q^{3/2}(1-q^{3/2})(1+q^6 )}_{+\ldots}. $$


Continued fraction Theta functions 

Mathematics Subject Classification (2000)

11A55 33D10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adiga, C., Vasuki, K.R., Bhaskar, N.: Some new modular relations for the cubic functions. South East Asian Bull. Math. (2010, To appear)Google Scholar
  2. 2.
    Andrews G.E.: An introduction to Ramanujan’s “Lost” notebook. Am. Math. Mon. 86, 89–108 (1976)CrossRefGoogle Scholar
  3. 3.
    Baruah N.D.: Modular equations for Ramanujan’s cubic continued fraction. J. Math. Anal. Appl. 268, 244–255 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berndt B.C.: Ramanujan Notebooks, Part III. Springer, NewYork (1991)MATHGoogle Scholar
  5. 5.
    Bhargava S., Adiga C., Naika M.S.M.: A new class of modular equations in Ramanujan’s alternative theory of elliptic functions of signature 4 and some new PQ eta fuction identities. Indian J. Math. 45, 23–39 (2003)MATHMathSciNetGoogle Scholar
  6. 6.
    Chan H.H.: On Ramanujan’s cubic continued fraction. Acta Arith. 73, 343–355 (1995)MathSciNetGoogle Scholar
  7. 7.
    Chan H.H., Huang S.S.: On the Ramanujan- Göllnitz—Gordan continued fraction. Ramanujan J. 1, 75–90 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ramanujan S.: Notebooks (2 volumes). Tata Institute of fundamental Research, Bombay (1957)Google Scholar
  9. 9.
    Ramanujan S.: The “Lost” Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)MATHGoogle Scholar
  10. 10.
    Rogers L.J.: On a type of modular relation. Proc. Lond. Math. Soc. 19, 387–397 (1920)CrossRefGoogle Scholar
  11. 11.
    Vasuki, K.R., Sharath, G., Rajanna, K.R.: Two modular equations for squares of the cubic functions with applications. Note di Matematica (2010, To appear)Google Scholar
  12. 12.
    Vasuki K.R., Srivasta Kumar B.R.: Certian identities for Ramanujan—Göllnitz—Gordan continued fraction. J. Comput. Appl. Math. 187, 87–95 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Vasuki, K.R., Srivasta Kumar, B.R.: Two identities for Ramanujan’s cubic continued fraction (Preprint)Google Scholar
  14. 14.
    Vasuki K.R., Swamy S.R.: A new identity for the Rogers—Ramanujan continued fraction. J. Appl. Math. Anal. Appl. 2, 71–83 (2006)MATHMathSciNetGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 2010

Authors and Affiliations

  1. 1.Department of Studies in MathematicsUniversity of MysoreManasagangotri, MysoreIndia
  2. 2.Department of MathematicsVidyavardhaka College of EngineeringGokulum, MysoreIndia

Personalised recommendations