Advertisement

Asymptotic profiles of steady Stokes and Navier–Stokes flows around a rotating obstacle

  • Reinhard FarwigEmail author
  • Toshiaki Hishida
Article

Abstract

We analyze the spatial anisotropic profiles at infinity of steady Stokes and Navier–Stokes flows around a rotating obstacle. It is shown that the Stokes flow is largely concentrated along the axis of rotation in the leading term and that a rotating profile can be found in the second term. The leading term for Navier–Stokes flow will be an adequate Landau solution. The proofs rely upon a detailed analysis of the associated fundamental solution tensor.

Keywords

Asymptotic profile Steady Stokes flow Steady Navier–Stokes flow Rotating obstacle 

Mathematics Subject Classification (2000)

35Q30 35Q35 35B40 76D05 76D07 

References

  1. 1.
    Bogovskiĭ M.E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20, 1094–1098 (1979)Google Scholar
  2. 2.
    Borchers W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes-Gleichungen inkompressibler viskoser Flüssigkeiten. Universität Paderborn, Habilitationsschrift (1992)Google Scholar
  3. 3.
    Cannone M., Karch G.: Smooth or singular solutions to the Navier–Stokes system?. J. Differ. Equ. 197, 247–274 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Farwig, R.: The stationary Navier–Stokes equations in a 3D-exterior domain. In: Kozono, H., Shibata, Y. (eds.) Recent Topics on Mathematical Theory of Viscous Incompressible Fluid, vol. 16, pp. 53–115. Lecture Notes in Num. Appl. Anal., Kinokuniya, Tokyo (1998)Google Scholar
  5. 5.
    Farwig R., Hishida T.: Stationary Navier–Stokes flow around a rotating obstacle. Funkcial. Ekvac. 50, 371–403 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Farwig, R., Hishida, T.: Asymptotic profile of steady Stokes flow around a rotating obstacle. Technische Universität Darmstadt, FB Mathematik, 2578 (2009) (preprint)Google Scholar
  7. 7.
    Farwig, R., Hishida, T.: Leading term at infinity of the steady Navier–Stokes flow around a rotating obstacle. Technische Universität Darmstadt, FB Mathematik, 2591 (2009) (preprint)Google Scholar
  8. 8.
    Galdi G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Friedlander, S. (ed.) Handbook of Mathematical Fluid Dynamics, vol. I, pp. 653–791. Elsevier, Amsterdam (2002)Google Scholar
  9. 9.
    Galdi G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Galdi G.P., Silvestre A.L.: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Rational Mech. Anal. 176, 331–350 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Galdi, G.P., Silvestre, A.L.: Further results on steady-state flow of a Navier–Stokes liquid around a rigid body. Existence of the wake, Kyoto Conference on the Navier–Stokes Equations and their Applications. RIMS Kôkyûroku Bessatsu B1, 127–143 (2007)Google Scholar
  12. 12.
    Hishida T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150, 307–348 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hishida T.: L q estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Japan 58, 743–767 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hishida T., Shibata Y.: L p-L q estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 193, 339–421 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Korolev, A., Šverák, V.: On the large-distance asymptotics of steady state solutions of the Navier–Stokes equations in 3D exterior domains. arXiv:math/07110560 (2007) (preprint)Google Scholar
  16. 16.
    Kračmar, S., Nečasová, Š., Penel, P.: Anisotropic L 2-estimates of weak solutions to the stationary Oseen-type equations in 3D-exterior domain for a rotating body. J. Math. Soc. Japan (to appear)Google Scholar
  17. 17.
    Landau L.D.: A new exact solution of Navier–Stokes equations. Dokl. Acad. Sci. URSS 43, 286–288 (1944)Google Scholar
  18. 18.
    Šverák, V.: On Landau’s solutions of the Navier–Stokes equations. arXiv:math/0604550 (2006) (preprint)Google Scholar

Copyright information

© Università degli Studi di Ferrara 2009

Authors and Affiliations

  1. 1.FB MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Graduate School of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations