ANNALI DELL'UNIVERSITA' DI FERRARA

, Volume 52, Issue 2, pp 431–456 | Cite as

On the spectrum of certain noncommutative harmonic oscillators

  • Alberto Parmeggiani
Article

Abstract

Some spectral properties of certain 2×2 globally elliptic systems of ordinary differential operators, a class of vector-valued deformations of the classical harmonic oscillator here called noncommutative harmonic oscillators, will be described, with special emphasis on the Poisson relation and clustering properties of the eigenvalues.

Keywords: Clustering theorems, Periodic trajectories, Poisson relations, Noncommutative harmonic oscillators

References

  1. 1. Brummelhuis, R.: On Melin's inequality for systems. Comm. in P.D.E. 26, no. 9-10, 1559-1606 (2001)Google Scholar
  2. 2. Chazarain, J.: Formule de Poisson pour les variétés riemanniennes. Inventiones Mathematicae 24, 65-82 (1974)Google Scholar
  3. 3. Chazarain, J.: Spectre d'un Hamiltonien quantique ed Mecanique Classique. Comm. P.D.E. 5, no. 6, 595-644 (1980)Google Scholar
  4. 4. Colin de Verdiére, Y.: Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes periodiques. Comment. Math. Helvetici 54, 508-522 (1979)Google Scholar
  5. 5. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Inventiones Mathematicae 29, 39-80 (1975)Google Scholar
  6. 6. Guillemin, V.W.: Fourier Integral Operators for Systems. Unpublished manuscript (1974)Google Scholar
  7. 7. Helffer, B., Robert, D.: Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. Ann. Inst. Fourier 31, no. 3, 169-223 (1981)Google Scholar
  8. 8. Helffer, B., Robert, D.: Propriétés asymptotiques du spectre d'opérateurs pseudodifferentiels sur Rn. Comm. in P.D.E. 7, 795-882 (1982)Google Scholar
  9. 9. Helffer, B.: Théorie Spectrale Pour Des Opérateurs Globalement Elliptiques. Astérisque 112, Soc. Math. de France, Paris (1984)Google Scholar
  10. 10. Hörmander, L.: The Analysis of Linear Partial Differential Operators, Vol.III. Grundlehren der matematischen Wissenschaften 274, Springer Verlag, Berlin (1985)Google Scholar
  11. 11. Ichinose, T., Wakayama, M.: Zeta functions for the spectrum of the non-commutative harmonic oscillators. Communications in Mathematical Physics 258, 697-739 (2005)Google Scholar
  12. 12. Ichinose, T., Wakayama, M.: Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations. Kyushu Journal of Mathematics 59, no. 1, 39-100 (2005)Google Scholar
  13. 13. Ivrii, V.: Global and partially global operators. Propagation of singularities and spectral asymptotics. Contemporary Mathematics 27, 119-125 (1984)Google Scholar
  14. 14. Kimoto, K., Wakayama, M.: Apéry-like numbers arising from special values of spectral zeta functions for the non-commutative harmonic oscillators. Kyushu Journal of Mathematics 60, 383–404 (2006)Google Scholar
  15. 15. Nagatou, K., Nakao, M., Wakayama, M.: Verified numerical computations for eigenvalues of non-commutative harmonic oscillators. Numer. Funct. Anal. Optim. 23, no. 5-6, 633-650 (2002)Google Scholar
  16. 16. Ochiai, H.: Non-commutative harmonic oscillators and Fuchsian Ordinary Differential Operators. Comm. in Math. Phys. 217, 357-373 (2001)Google Scholar
  17. 17. Ochiai, H.: A special value of the spectral zeta function of the non-commutative harmonic oscillators. Preprint (2004)Google Scholar
  18. 18. Parenti, C.: Sistemi iperbolici e relazioni di Poisson. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna, A.A. 1986-87, Bologna, XVII. 1 - XVII. 12Google Scholar
  19. 19. Parmeggiani, A., Wakayama, M.: Oscillator Representations and Systems of Ordinary Differential Equations. Proceedings of the National Academy of Sciences U.S.A. 98, no. 1, 26-30 (2001)Google Scholar
  20. 20. Parmeggiani, A., Wakayama, M.: Non-Commutative Harmonic Oscillators-I. Forum Mathematicum 14, 539-604 (2002)Google Scholar
  21. 21. Parmeggiani, A., Wakayama, M.: Non-Commutative Harmonic Oscillators-II. Forum Mathematicum 14, 669-690 (2002)Google Scholar
  22. 22. Parmeggiani, A., Wakayama, M.: Corrigenda and Remarks to “Non-Commutative Harmonic Oscillators-I.” Forum Mathematicum 15, 955-963 (2003)Google Scholar
  23. 23. Parmeggiani, A.: On the Spectrum and the Lowest Eigenvalue of Certain Non-Commutative Harmonic Oscillators. Kyushu Journal of Mathematics, 58, no. 2, 277-322 (2004)Google Scholar
  24. 24. Parmeggiani, A.: On the spectrum of certain noncommutative harmonic oscillators and semiclassical analysis. Preprint (2006).Google Scholar
  25. 25. Robert, D.: Autour de l'Approximation Semi-Classique. Progress in Mathematics Vol. 68, Birkhäuser (1987)Google Scholar
  26. 26. Shubin, M.: Pseudodifferential Operators and Spectral Theory. Springer Verlag, Berlin (1987)Google Scholar
  27. 27. Taylor, M.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)Google Scholar
  28. 28. Weinstein, A.: Asymptotics of Eigenvalue Clusters for the Laplacian plus a Potential. Duke Math. J. 44, 883-892 (1977)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Alberto Parmeggiani
    • 1
  1. 1.Department of Mathematics, University of Bologna, Piazza di Porta S.Donato 5, 40126 BolognaItaly

Personalised recommendations