ANNALI DELL'UNIVERSITA' DI FERRARA

, Volume 52, Issue 2, pp 291–301 | Cite as

Well Posedness for Multilane Traffic Models

  • Rinaldo M. Colombo
  • Andrea Corli
Article

Abstract

We give rigorous results on the analytical properties of multilane traffic flow models based on hyperbolic balance laws.

Keywords: Traffic flows, Hyperbolic conservatin laws, Operator splitting method

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60, no. 3, 916–938 (2000)Google Scholar
  2. 2. Bagnerini, P., Colombo, R.M., Corli, A.: On the role of source terms in continuum traffic flow models. Mathematical and Computer Modeling, to appear (2006)Google Scholar
  3. 3. Bressan, A.: Hyperbolic systems of conservation laws. Oxford University Press, Oxford (2000)Google Scholar
  4. 4. Chanut, S., Buisson, C.: A macroscopic model and its numerical solution for a two-flow mixed traffic with different speeds and lengths. Transportation Res. Rec. 1852, 209–219 (2003)Google Scholar
  5. 5. Colombo, R.M.: A 2× 2 hyperbolic traffic flow model. Math. Comput. Modelling 35, no. 5-6, 683–688 (2002)Google Scholar
  6. 6. Colombo, R.M.: Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63, no. 2, 708–721 (2002)Google Scholar
  7. 7. Colombo, R.M., Corli, A.: Dynamic parameters identification in traffic flow modeling. In Proceedings of the Fifth International Conference on Dynamical Systems and Differential Equations (2004)Google Scholar
  8. 8. Colombo, R.M., Corli, A.: On a class of hyperbolic balance laws. J. Hyperbolic Differ. Equ. 1, no. 4, 725–745 (2004)Google Scholar
  9. 9. Colombo, R.M., Goatin, P., Priuli, F.S.: Global Well posedness of a traffic flow model with phase transitions. Nonlinear Analysis Ser. A: Theory, Methods & Applications, to appear (2006)Google Scholar
  10. 10. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Springer-Verlag, Berlin-Heidelberg (2000)Google Scholar
  11. 11. Filippov, A.F.: Differential equations with discontinuous righthand sides. Kluwer Academic Publishers Group, Dordrecht (1988)Google Scholar
  12. 12. Greenberg, J.M., Klar, A., Rascle, M.: Congestion on multilane highways. SIAM J. Appl. Math. 63, no. 3, 818–833 (2003)Google Scholar
  13. 13. Helbing, D., Greiner, A.: Modeling and simulation of multi-lane traffic flow. Phys. Rev. E 55, no. 3, 5498 (1997)Google Scholar
  14. 14. Herty, M., Klar, A.: Modeling, simulation, and optimization of traffic flow networks. SIAM J. Sci. Comput. 25, no. 3, 1066–1087 (2003)Google Scholar
  15. 15. Hoff, D.: Invariant regions for systems of conservation laws. Trans. Amer. Math. Soc. 289, no. 2, 591–610 (1985)Google Scholar
  16. 16. Hoogendoorn, S.: Multiclass continuum modelling of multilane traffic flow. Delft University Press, Delft (1999)Google Scholar
  17. 17. Klar, A., Kühne, R.D., Wegener, R.: Mathematical models for vehicular traffic. Surveys Math. Indust. 6, no. 3, 215–239 (1996)Google Scholar
  18. 18. Klar, A., Wegener, R.: A hierarchy of models for multilane vehicular traffic. I. Modeling. SIAM J. Appl. Math. 59, no. 3, 983–1001 (1999)Google Scholar
  19. 19. Klar, A., Wegener, R.: A hierarchy of models for multilane vehicular traffic. II. Numerical investigations. SIAM J. Appl. Math. 59, no. 3, 1002–1011 (1999)Google Scholar
  20. 20. Nagumo, M.: Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen. Proc. Phys. Math. Soc. Japan 24, no. 3, 551–559 (1942)Google Scholar
  21. 21. Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. Amer. Math. Soc. 280, no. 2, 781–795 (1983)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Rinaldo M. Colombo
    • 1
  • Andrea Corli
    • 2
  1. 1.Department of Mathematics, University of Brescia, I-25123 BresciaItaly
  2. 2.Department of Mathematics, University of Ferrara, I-44100 FerraraItaly

Personalised recommendations