Skip to main content

Advertisement

Log in

Zellbasierte Immunmodulation in der Nierentransplantation

Cell-based immunomodulation in kidney transplantation

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Trotz der Optimierung der immunsuppressiven Protokolle gilt es angesichts eines 10-Jahres-Transplantatüberlebens von unter 60 % weiterhin, die sich darstellenden Probleme zu adressieren. Neben den Defiziten in der Therapie chronisch-aktiver antikörpervermittelter Transplantatabstoßungen müssen dabei auch potenzielle Langzeitnebenwirkungen der Immunsuppression, wie sie sich z. B. in der Verwendung von Calcineurininhibitoren darstellen, kritisch evaluiert werden. In diesem Kontext muss dabei grundsätzlich bedacht werden, dass eine ausreichend potente Immunsuppression, jedoch ohne Aggravierung des patientenindividuellen Risikoprofils, erreicht wird. Hinsichtlich der verwendeten immunsuppressiven Substanzen muss auch bedacht werden, inwieweit regulatorische, protektive Zellpopulationen bewahrt und zugleich aber nachteilige, z. B. T‑Effektor-Zellen (Teff), effektiv supprimiert werden. Nach den entsprechenden Etablierungsschritten, wie der Charakterisierung des Phänotyps regulatorischer Zellprodukte, ihrer Isolation und Expansion, stehen heute unterschiedliche regulatorische Zellprodukte, z. B. regulatorische T‑Zellen (Treg) oder Makrophagen (Mreg) bzw. tolerogene dendritische Zellen zur Verfügung. Nach der anfänglichen Verwendung in kleinen Proof-of-concept-Untersuchungen, z. B. im Kontext von Autoimmunerkrankungen oder in der Therapie einer anhaltenden Inflammation nach Nierentransplantation, wurden unterschiedliche regulatorische Zellprodukte standardisiert erstmalig im Rahmen der internationalen ONE-Study untersucht. In dieser klinischen Prüfung wurden regulatorische Zellprodukte im direkten Vergleich mit einer Standardimmunsuppression untersucht und beide Behandlungsarme einem einheitlichen immunologischen Monitoring unterzogen.

Abstract

Despite substantial progress in the usage and availability of different immunosuppressive protocols, transplant survival is still limited and has plateaued with a 10-year allograft survival <60% in Germany. Beside deficits in the treatment of chronically active antibody-mediated transplant rejection, potential long-term side effects of immunosuppression, such as those occurring when using calcineurin inhibitors, must be critically evaluated. In terms of patient safety a balance between sufficiently potent immunosuppression and the individual patient risk profile must be fundamentally considered. Furthermore, with respect to the immunosuppressive drugs used it must also be taken into consideration that deleterious cell populations, e.g. effector T‑cells must be effectively suppressed but regulatory protective cell populations must be preserved. After appropriate establishment steps, such as characterization of the phenotype of regulatory cell products, their isolation and expansion, various regulatory cell products, such as regulatory T‑cells (Tregs), macrophages (Mregs) and tolerogenic dendritic cells are currently available. Following the initial use in small proof of concept trials, e.g. in the context of autoimmune diseases or in the treatment of persistent inflammation after kidney transplantation, various regulatory cell products were investigated in a standardized trial for the first time within the international ONE study. In this clinical investigation regulatory cell products were directly compared with standard of care immunosuppression and both treatment arms were subjected to a uniform immunological monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Wolfe RA, Ashby VB, Milford EL et al (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341:1725–1730

    CAS  Google Scholar 

  2. Tonelli M, Wiebe N, Knoll G et al (2011) Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 11:2093–2109

    CAS  PubMed  Google Scholar 

  3. Gondos A, Dohler B, Brenner H, Opelz G (2013) Kidney graft survival in Europe and the United States: strikingly different long-term outcomes. Transplantation 95:267–274

    PubMed  Google Scholar 

  4. Sellares J, de Freitas DG, Mengel M et al (2012) Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant 12:388–399

    CAS  PubMed  Google Scholar 

  5. Casey MJ, Meier-Kriesche HU (2011) Calcineurin inhibitors in kidney transplantation: friend or foe? Curr Opin Nephrol Hypertens 20:610–615

    CAS  PubMed  Google Scholar 

  6. Issa N, Kukla A, Ibrahim HN (2013) Calcineurin inhibitor nephrotoxicity: a review and perspective of the evidence. Am J Nephrol 37:602–612

    CAS  PubMed  Google Scholar 

  7. Halloran PF, Reeve JP, Pereira AB, Hidalgo LG, Famulski KS (2014) Antibody-mediated rejection, T cell-mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of kidney transplant biopsies. Kidney Int 85:258–264

    CAS  PubMed  Google Scholar 

  8. Snanoudj R, Rabant M, Royal V, Pallet N, Noël LH, Legendre C (2009) Nephrotoxicity of calcineurin inhibitors: presentation, diagnostic problems and risk factors. Nephrol Ther 5(Suppl 6):S365–S370

    CAS  PubMed  Google Scholar 

  9. Jones TR, Ha J, Williams MA et al (2002) The role of the IL‑2 pathway in costimulation blockade-resistant rejection of allografts. J Immunol 168:1123–1130

    CAS  PubMed  Google Scholar 

  10. Sommerer C, Suwelack B, Dragun D et al (2019) An open-label, randomized trial indicates that everolimus with tacrolimus or cyclosporine is comparable to standard immunosuppression in de novo kidney transplant patients. Kidney Int 96:231–244

    CAS  PubMed  Google Scholar 

  11. Pascual J, Berger SP, Witzke O et al (2018) Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol 29:1979–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berger SP, Sommerer C, Witzke O et al (2019) Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from TRANSFORM study. Am J Transplant 19(11):3018–3034

    CAS  PubMed  Google Scholar 

  13. Sawinski D, Trofe-Clark J, Leas B et al (2016) Calcineurin inhibitor minimization, conversion, withdrawal, and avoidance strategies in renal transplantation: a systematic review and meta-analysis. Am J Transplant 16:2117–2138

    CAS  PubMed  Google Scholar 

  14. Grinyo JM, Del Carmen RM, Alberu J et al (2017) Safety and efficacy outcomes 3 years after switching to belatacept from a calcineurin inhibitor in kidney transplant recipients: results from a phase 2 randomized trial. Am J Kidney Dis 69:587–594

    CAS  PubMed  Google Scholar 

  15. Vincenti F (2016) Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 374:2600–2601

    PubMed  Google Scholar 

  16. Vincenti F, Rostaing L, Grinyo J et al (2016) Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 374:333–343

    CAS  PubMed  Google Scholar 

  17. Durrbach A, Pestana JM, Pearson T et al (2010) A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant 10:547–557

    CAS  PubMed  Google Scholar 

  18. Vincenti F, Charpentier B, Vanrenterghem Y et al (2010) A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant 10:535–546

    CAS  PubMed  Google Scholar 

  19. Warrens AN, Lombardi G, Lechler RI (1994) Presentation and recognition of major and minor histocompatibility antigens. Transpl Immunol 2:103–107

    CAS  PubMed  Google Scholar 

  20. Lechler RI, Batchelor JR (1982) Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 155:31–41

    CAS  PubMed  Google Scholar 

  21. Herrera OB, Golshayan D, Tibbott R et al (2004) A novel pathway of alloantigen presentation by dendritic cells. J Immunol 173:4828–4837

    CAS  PubMed  Google Scholar 

  22. Hutchinson JA, Geissler EK (2015) Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney Int 87:1116–1124

    PubMed  Google Scholar 

  23. Pasquet L, Douet JY, Sparwasser T, Romagnoli P, van Meerwijk JP (2013) Long-term prevention of chronic allograft rejection by regulatory T‑cell immunotherapy involves host Foxp3-expressing T cells. Blood 121:4303–4310

    CAS  PubMed  Google Scholar 

  24. Liu XQ, Hu ZQ, Pei YF, Tao R (2013) Clinical operational tolerance in liver transplantation: state-of-the-art perspective and future prospects. HBPD INT 12:12–33

    PubMed  Google Scholar 

  25. Sagoo P, Perucha E, Sawitzki B et al (2010) Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest 120:1848–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Allan SE, Passerini L, Bacchetta R et al (2005) The role of 2 FOXP3 isoforms in the generation of human CD4+ tregs. J Clin Invest 115:3276–3284

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bacchetta R, Gambineri E, Roncarolo MG (2007) Role of regulatory T cells and FOXP3 in human diseases. J Allergy Clin Immunol 120:227–235

    CAS  PubMed  Google Scholar 

  28. Polansky JK, Schreiber L, Thelemann C et al (2010) Methylation matters: binding of Ets‑1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med 88:1029–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hutchinson JA, Ahrens N, Geissler EK (2017) MITAP-compliant characterization of human regulatory macrophages. Transpl Int 30:765–775

    CAS  PubMed  Google Scholar 

  30. Moreau A, Varey E, Bouchet-Delbos L, Cuturi MC (2012) Cell therapy using tolerogenic dendritic cells in transplantation. Transplant Res 1:13

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Moreau A, Varey E, Beriou G et al (2012) Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials. Front Immunol 3:218

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheffold A (2014) How can the latest technologies advance cell therapy manufacturing? Curr Opin Organ Transplant 19:621–626

    CAS  PubMed  Google Scholar 

  33. Riley JL, June CH, Blazar BR (2009) Human T regulatory cell therapy: Take a billion or so and call me in the morning. Immunity 30:656–665

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dijke IE, Hoeppli RE, Ellis T et al (2016) Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am J Transplant 16:58–71

    CAS  PubMed  Google Scholar 

  35. Tang Q, Lee K (2012) Regulatory T‑cell therapy for transplantation: How many cells do we need? Curr Opin Organ Transplant 17:349–354

    CAS  PubMed  Google Scholar 

  36. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI (2007) In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109:827–835

    CAS  PubMed  Google Scholar 

  37. Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H (2002) Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J Immunol 168:5558–5565

    CAS  PubMed  Google Scholar 

  38. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA (2009) Plasticity of CD4(+) FoxP3(+) T cells. Curr Opin Immunol 21:281–285

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bluestone JA, Buckner JH, Fitch M et al (2015) Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med 7:315ra189

    PubMed  PubMed Central  Google Scholar 

  40. Safinia N, Vaikunthanathan T, Fraser H et al (2016) Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget 7:7563–7577

    PubMed  PubMed Central  Google Scholar 

  41. Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G (2019) Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol 10:43

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Desreumaux P, Foussat A, Allez M et al (2012) Safety and efficacy of antigen-specific regulatory T‑cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143:1207–1217

    CAS  PubMed  Google Scholar 

  43. Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A et al (2014) Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets—results of one year follow-up. Clin Immunol 153:23–30

    CAS  PubMed  Google Scholar 

  44. Todo S, Yamashita K, Goto R et al (2016) A pilot study of operational tolerance with a regulatory T‑cell-based cell therapy in living donor liver transplantation. Hepatology 64:632–643

    CAS  PubMed  Google Scholar 

  45. Chandran S, Tang Q, Sarwal M et al (2017) Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants. Am J Transplant 17:2945–2954

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Streitz M, Miloud T, Kapinsky M et al (2013) Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res 2:17

    PubMed  PubMed Central  Google Scholar 

  47. Riquelme P, Haarer J, Kammler A et al (2018) TIGIT(+) iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 9:2858

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bergler.

Ethics declarations

Interessenkonflikt

T. Bergler, E.K. Geissler und B. Banas geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

U. Heemann, München

U. Kunzendorf, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergler, T., Geissler, E.K. & Banas, B. Zellbasierte Immunmodulation in der Nierentransplantation. Nephrologe 15, 81–86 (2020). https://doi.org/10.1007/s11560-020-00403-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-020-00403-z

Schlüsselwörter

Keywords

Navigation