Advertisement

Der Nephrologe

, Volume 6, Issue 6, pp 529–536 | Cite as

EAST-Syndrom

Ein neues Krankheitsbild mit renalem Salzverlust
  • D. Böckenhauer
  • H. Stanescu
  • S. Bandulik
  • M. Reichold
  • A. Zdebik
  • R. Warth
  • R. Kleta
Pädiatrische Nephrologie

Zusammenfassung

Die Erforschung seltener Erkrankungen ermöglicht häufig entscheidende Erkenntnisse über die Pathophysiologie des Menschen. Kürzlich haben wir ein neues Krankheitsbild bei Kindern beschrieben, welches mit einem dem Gitelman-Syndrom ähnlichen renalen Salzverlust einhergeht. Ursprünglich wurden die Kinder im Säuglingsalter mit Krampfanfällen auffällig, und später wurden bei Untersuchungen bezüglich einer Entwicklungsverzögerung auch noch Ataxie und Innenohrschwerhörigkeit festgestellt. Diese Kombination von Symptomen war bisher nicht beschrieben worden, und entsprechend benannten wir dieses neu entdeckte Syndrom mit dem Akronym EAST (Epilepsie, Ataxie, Schwerhörigkeit und Tubulopathie). Genetische Untersuchungen an einer konsanguinen Familie mit 4 betroffenen Kindern identifizierten rezessive Mutationen im Kaliumkanal KCNJ10 als Ursache der Erkrankung. Dies unterstreicht die physiologische Relevanz dieses Kanals für Gehirn, Innenohr und Niere. KCNJ10 ist dementsprechend ein potenzieller Angriffspunkt für neue Medikamente, z. B. zur Behandlung von Bluthochdruck oder von Epilepsie.

Schlüsselwörter

EAST-Syndrom KCNJ10 Epilepsie Ataxie Salzverlust 

EAST syndrome

A new disease with renal salt wasting

Abstract

The investigation of rare diseases often reveals important insights into human pathophysiology. Recently, we described a new syndrome in children with renal salt wasting mimicking Gitelman syndrome. The children initially presented in infancy with seizures and investigations into developmental delay later revealed ataxia and sensorineural deafness. This constellation of symptoms was not previously recognized and accordingly we assigned this newly discovered syndrome the acronym EAST (Epilepsy, Ataxia, Sensorineural deafness and Tubulopathy). Investigations in an informative consanguineous family with four affected children revealed the underlying genetic basis as recessive mutations in the potassium channel KCNJ10. This highlights the importance of KCNJ10 in brain and renal physiology and makes it a potential target for new therapies, e.g. for the treatment of hypertension or epilepsy.

Keywords

EAST syndrome KCNJ10 Epilepsy Ataxia Renal salt wasting 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Bandulik S, Schmidt K, Böckenhauer D et al (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 461:423–435PubMedCrossRefGoogle Scholar
  2. 2.
    Bendz H, Aurell M (1999) Drug-induced diabetes insipidus: incidence, prevention and management. Drug Saf 21:449–456PubMedCrossRefGoogle Scholar
  3. 3.
    Bleich M (2009) Membrane physiology – bridging the gap between medical disciplines. N Engl J Med 360:2012–2014PubMedCrossRefGoogle Scholar
  4. 4.
    Böckenhauer D, Aitkenhead H (2011) The kidney speaks: interpreting urinary electrolytes. Arch Dis Child [in press]Google Scholar
  5. 5.
    Böckenhauer D, Feather S, Stanescu HC et al (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970PubMedCrossRefGoogle Scholar
  6. 6.
    Böckenhauer D, Medlar AJ, Ashton E et al (2011) Genetic testing in renal disease. Pediatr Nephrol [Epub ahead of print]Google Scholar
  7. 7.
    Buono RJ, Lohoff FW, Sander T et al (2004) Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res 58:175–183PubMedCrossRefGoogle Scholar
  8. 8.
    ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997CrossRefGoogle Scholar
  9. 9.
    Freudenthal B, Kulaveerasingam D, Lingappa L et al (2011) KCNJ10 mutations disrupt function in patients with EAST syndrome. Nephron Physiol 119(3):p40–p48PubMedCrossRefGoogle Scholar
  10. 10.
    Heuser K, Nagelhus EA, Tauboll E et al (2010) Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res 88:55–64PubMedCrossRefGoogle Scholar
  11. 11.
    Huen SC, Goldfarb DS (2007) Adverse metabolic side effects of thiazides: implications for patients with calcium nephrolithiasis. J Urol 177:1238–1243PubMedCrossRefGoogle Scholar
  12. 12.
    Kleta R, Böckenhauer D (2006) Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol 104:73–80CrossRefGoogle Scholar
  13. 13.
    Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308PubMedCrossRefGoogle Scholar
  14. 14.
    Kofuji P, Ceelen P, Zahs KR et al (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740PubMedGoogle Scholar
  15. 15.
    Lenzen KP, Heils A, Lorenz S et al (2005) Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Res 63:113–118PubMedCrossRefGoogle Scholar
  16. 16.
    Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556PubMedCrossRefGoogle Scholar
  17. 17.
    Lucarini N, Verrotti A, Napolioni V et al (2007) Genetic polymorphisms and idiopathic generalized epilepsies. Pediatr Neurol 37:157–164PubMedCrossRefGoogle Scholar
  18. 18.
    Marcus DC, Wu T, Wangemann P et al (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407PubMedGoogle Scholar
  19. 19.
    Neusch C, Papadopoulos N, Müller M et al (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95:1843–1852PubMedCrossRefGoogle Scholar
  20. 20.
    Neusch C, Rozengurt N, Jacobs RE et al (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21:5429–5438PubMedGoogle Scholar
  21. 21.
    Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601PubMedCrossRefGoogle Scholar
  22. 22.
    Pak CY (2004) Medical management of urinary stone disease. Nephron Clin Pract 98:c49–c53PubMedCrossRefGoogle Scholar
  23. 23.
    Reichold M, Zdebik AA, Lieberer E et al (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA 107:14490–14495PubMedCrossRefGoogle Scholar
  24. 24.
    Rozengurt N, Lopez I, Chiu CS et al (2003) Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 177:71–80PubMedCrossRefGoogle Scholar
  25. 25.
    Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN et al (2010) Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem 285:36040–36048PubMedCrossRefGoogle Scholar
  26. 26.
    Scholl UI, Choi M, Liu T et al (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 106:5842–5847PubMedCrossRefGoogle Scholar
  27. 27.
    Simon DB, Nelson-Williams C, Bia MJ et al (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12:24–30PubMedCrossRefGoogle Scholar
  28. 28.
    Tang X, Hang D, Sand A et al (2010) Variable loss of Kir4.1 channel function in SeSAME syndrome mutations. Biochem Biophys Res Commun 399:537–541PubMedCrossRefGoogle Scholar
  29. 29.
    Thompson DA, Feather S, Stanescu HC et al (2011) Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome. J Physiol 589:1681–1689PubMedCrossRefGoogle Scholar
  30. 30.
    West WJ (1841) On a peculiar form of infantile convulsions. Lancet 1:724–725CrossRefGoogle Scholar
  31. 31.
    Williams DM, Lopes CM, Rosenhouse-Dantsker A et al (2010) Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J Am Soc Nephrol 21:2117–2129PubMedCrossRefGoogle Scholar
  32. 32.
    Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Böckenhauer
    • 1
    • 2
  • H. Stanescu
    • 2
  • S. Bandulik
    • 3
  • M. Reichold
    • 3
  • A. Zdebik
    • 2
  • R. Warth
    • 3
  • R. Kleta
    • 1
    • 2
  1. 1.Great Ormond Street Hospital for Children NHS TrustLondonUK
  2. 2.Institute of Child HealthUniversity College LondonLondonUK
  3. 3.Medizinische ZellbiologieUniversität RegensburgRegensburgDeutschland

Personalised recommendations