Skip to main content
Log in

Ionenkanäle und Nieren- und Hochdruckerkrankungen

Ion channels in relation to renal and hypertensive diseases

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung:

Die Funktion der Niere wird ganz wesentlich durch die Aktivität von Ionenkanälen und Ionentransportern bestimmt. Auf dem Gebiet der Ionenkanalforschung hat es in den vergangenen zehn Jahren einige herausragende Neuentdeckungen gegeben, die das Feld der Kanalopathien, also Erkrankungen die auf die Fehlfunktion von einzelnen Ionenkanälen zurückzuführen sind, ganz neu beleuchtet haben und gleichzeitig auch die pathophysiologische Bedeutung von Ionenkanälen für multifaktorielle Erkrankungen aufzeigten. Diese Entwicklung betrifft insbesondere auch das nephrologische Forschungsgebiet, bei der Arbeiten zu Ionenkanälen nicht nur Fortschritte im Verständnis der physiologischen Nierenfunktion, sondern besonders auch bei der Aufklärung von Pathomechanismen von spezifischen Nierenerkrankungen ergeben haben. Anhand von fünf Nieren- und Hochdruckerkrankungen wird die Art und Weise, in der Ionenkanäle Krankheiten auslösen können, dargestellt.

Abstract

Renal function is essentially determined by ion channels and ion transporters. Several outstanding discoveries have been made in the past 10 years in the field of research on ion channels. These insights have shed new light on ion channelopathies, i.e., disorders due to dysfunction of individual ion channels, and at the same time pinpointed the pathophysiological significance of ion channels for multifactorial diseases. This development also applies particularly to the area of nephrological research where studies on ion channels have not only led to progress in understanding physiological renal function but have also aided in elucidating the pathomechanisms of specific kidney diseases. Illustrated on the basis of five renal and hypertensive diseases, the manner in which ion channels can cause disease is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Benzing T (2004) Signaling at the slit diaphragm. J Am Soc Nephrol 15: 1382–1391

    Article  PubMed  Google Scholar 

  2. Brakemeier S, Si H, Gollasch M et al. (2004) Dent’s disease: identification of a novel mutation in the renal chloride channel CLCN5. Clin Nephrol 62: 387–390

    PubMed  CAS  Google Scholar 

  3. Chapman AB (2007) Autosomal-dominant polycystic kidney disease: time for a change? J Am Soc Nephrol 18: 1399–1407

    Article  PubMed  CAS  Google Scholar 

  4. Hansson JH, Schild L, Lu Y et al. (1995) A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 92: 11495–11499

    Article  PubMed  CAS  Google Scholar 

  5. Hoyer J (1997) Endothelial vasoregulation and mechanosensitive ion channels in hypertension. Nephrol Dial Transplant 12: 6–8

    Article  PubMed  CAS  Google Scholar 

  6. Huber TB, Benzing T (2005) The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14: 211–216

    PubMed  Google Scholar 

  7. Ji W, Foo JN, O’Roak BJ et al. (2008) Rare mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40: 592–599

    Article  PubMed  CAS  Google Scholar 

  8. Jentsch TJ (2008) CLC Chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43: 3–36

    Article  PubMed  CAS  Google Scholar 

  9. Kim E, Walz G (2007) Sensitive cilia set up the kidney. Nat Med 13: 1409–1411

    Article  PubMed  CAS  Google Scholar 

  10. Köhler R, Wulff H, Eichler I et al. (2003) Blockade of intermediate-conduction calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108: 1119–1125

    Article  PubMed  CAS  Google Scholar 

  11. Kuehn EW, Walz G (2007) Prime time for polycystic kidney disease: does one shot of roscovitine bring the cure. Nephrol Dial Transplant 22: 2183–2185

    Article  CAS  Google Scholar 

  12. Li X, Luo Y, Starremans PG et al. (2005) Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 7: 1102–1112

    Article  CAS  Google Scholar 

  13. Maier T, Hoyer J (2006) Monogenetische Hypertonie. Dtsch Med Wochenschr 131: 2601–2604

    Article  PubMed  CAS  Google Scholar 

  14. Möller CC, Wei C, Altintas MM et al. (2007) Induction of TRPC6 channel inacquired forms of proteinuric kidney disease. J Am Soc Nephrol 18: 29–36

    Article  PubMed  CAS  Google Scholar 

  15. Nijenhuis T, Vallon V, Kemp AW van der et al. (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115: 1651–1658

    Article  PubMed  CAS  Google Scholar 

  16. Nijenhuis T, Hoenderop JG, Bindels RJ (2004) Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol 15: 549–557

    Article  PubMed  CAS  Google Scholar 

  17. Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83: 253–307

    PubMed  Google Scholar 

  18. Paunier L, Radde IC, Kooh SW et al. (1968) Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 41: 385–402

    Google Scholar 

  19. Reiser J, Polu KR, Möller CC et al. (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37: 739–744

    Article  PubMed  CAS  Google Scholar 

  20. Schild L, Lu Y, Gautschi I et al. (1996) Identifikcation of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15: 2381–2387

    PubMed  CAS  Google Scholar 

  21. Schlingmann KP, Weber S, Peters M et al. (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31: 166–170

    Article  PubMed  CAS  Google Scholar 

  22. Simons M, Walz G (2006) Polycystic kidney disease: cell division without a c(l)ue? Kidney Int 70: 854–864

    Article  PubMed  CAS  Google Scholar 

  23. Shillingford JM, Murcia NS, Larson CH et al. (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cytogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103: 5466–5471

    Article  PubMed  CAS  Google Scholar 

  24. Thakker RV (2000) Pathogenesis of Dent’s disease and related syndromes of X-linked nephrolithiasis. Kidney Int 57: 787–793

    Article  PubMed  CAS  Google Scholar 

  25. Voets T, Nilius B, Hoefs S et al. (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279: 19–25

    Article  PubMed  CAS  Google Scholar 

  26. Walder RY, Shalev H, Brennan TM et al. (1997) Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 6: 1491–1497

    Article  PubMed  CAS  Google Scholar 

  27. Winn MP (2008) TRP’ing into a new era for glomerular disease. J Am Soc Nephrol 19: 1071–1075

    Article  PubMed  CAS  Google Scholar 

  28. Winn MP, Conlon PJ, Lynn KL et al. (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804

    Article  PubMed  CAS  Google Scholar 

  29. Fu X, Wang Y, Schetle N et al. (2008) The subcellular localization of TRPP2 modulates its function. J Am Soc Nephrol 19: 1342–1351

    Article  PubMed  CAS  Google Scholar 

  30. Jentsch TJ (2007) Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 578: 633–640

    Article  PubMed  CAS  Google Scholar 

  31. Huber TB, Benzing T (2005) The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14: 211–216

    Article  PubMed  Google Scholar 

  32. Köhler R, Wulff H, Eichler I et al. (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108: 1119–1125

    Article  PubMed  CAS  Google Scholar 

  33. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104: 545-56

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angabe

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grgic, I., Köhler, R. & Hoyer, J. Ionenkanäle und Nieren- und Hochdruckerkrankungen. Nephrologe 3, 358–365 (2008). https://doi.org/10.1007/s11560-008-0225-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-008-0225-0

Schlüsselwörter

Keywords

Navigation