Advertisement

Der Nephrologe

, Volume 1, Issue 1, pp 40–49 | Cite as

Neue Konzepte für die funktionelle MRT bei Nierenerkrankungen

  • H. J. Michaely
  • O. Dietrich
  • M. F. Reiser
  • S. O. Schoenberg
Leitthema

Zusammenfassung

Funktionelle Nierenbildgebung ist ein schnell wachsendes Feld der MRT-Bildgebung, bei dem die Gewinnung funktioneller Parameter, wie der GFR (glomeruläre Filtrationsrate) oder der Nierenperfusion im Vordergrund steht. Messmethoden wie DWI („diffusion-weighted imaging“) und BOLD („blood level dependent oxygenation“)-Imaging und die Anwendung neuartiger Kontrastmittel erlauben zudem Aussagen über die Mikrostruktur des Gewebes, die Oxygenierung und den Gehalt an Makrophagen. Anstelle der rein morphologischen Bildgebung, wie sie bislang angewandt wird, können nun mit funktioneller MR-Nierenbildgebung pathophysiologische Prozesse von Nierenerkrankungen gemessen und sichtbar gemacht werden. Das Spektrum der Anwendungen reicht von der Charakterisierung von Nierenarterienstenosen, über die Messung der GFR, die Überwachung von Nierentransplantaten bis hin zur Messung des Sauerstoffgehalts der Nieren unter pharmakologischer Stimulation. Die bislang veröffentlichten Daten basieren sowohl auf Tierversuchen als auch — in geringerem Maß — auf Patienten- und Probandenstudien. Da die meisten funktionellen Sequenzen relativ hohe Ansprüche an die Scanner-Hardware haben und zudem bessere Ergebnisse bei höheren Feldstärken als bei aktuell 1,5 T aufweisen, ist die zunehmende Verbreitung von Hochfeldscannern sehr vielversprechend für funktionelle Nierenbildgebung.

Schlüsselwörter

Niere BOLD Diffusions-gewichtete Bildgebung Nierenperfusion Funktionelle Magnetresonanzbildgebung 

New concepts for functional MRI for renal diseases

Abstract

Functional imaging of the kidneys is a rapidly growing field in magnetic resonance imaging which focuses on the determination of functional parameters such as renal perfusion or glomerular filtration rate (GFR). New measurement methods such as diffusion-weighted and blood level dependent oxygenation imaging, as well as the application of new contrast agents, allow for the assessment of the microstructure of tissue, the level of oxygenation and macrophage content. Instead of purely morphological imaging, imaging now potentially visualizes the pathophysiology of renal diseases. The spectrum of applications includes characterization of renal artery stenoses, determination of the GFR, as well as measurement of renal oxygen content after pharmacological stress. Published data are derived mainly from animal models, with only a few patient and volunteer studies. As most functional MR sequences are relatively demanding in terms of scanner hardware and yield better results with field strengths above 1.5 T, the growing number of clinical high-field scanners is very promising for functional renal imaging.

Keywords

Kidney BOLD Diffusion-weighted imaging Renal perfusion Functional magnetic resonance imaging 

Notes

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Aumann S, Schoenberg SO, Just A, Briley-Saebo K, Bjornerud A, Bock M, Brix G (2003) Quantification of renal perfusion using an intravascular contrast agent (part 1): results in a canine model. Magn Reson Med 49: 276–287Google Scholar
  2. 2.
    Chan JH, Tsui EY, Luk SH, Fung SL, Cheung YK, Chan MS, Yuen MK, Mak SF, Wong KP (2001) MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis. Clin Imaging 25: 110–113Google Scholar
  3. 3.
    Chow LC, Bammer R, Moseley ME, Sommer FG (2003) Single breath-hold diffusion-weighted imaging of the abdomen. J Magn Reson Imaging 18: 377–382Google Scholar
  4. 4.
    Cova M, Squillaci E, Stacul F, Manenti G, Gava S, Simonetti G, Pozzi-Mucelli R (2004) Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 77: 851–857Google Scholar
  5. 5.
    De Bazelaire C, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma (1). Acad Radiol 12: 347–357Google Scholar
  6. 6.
    Epstein FH, Prasad P (2000) Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int 57: 2080–2083Google Scholar
  7. 7.
    Epstein FH, Veves A, Prasad PV (2002) Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 25: 575–578Google Scholar
  8. 8.
    Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, Brady TJ (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17: 336–347Google Scholar
  9. 9.
    Gandy SJ, Sudarshan TA, Sheppard DG, Allan LC, McLeay TB, Houston JG (2003) Dynamic MRI contrast enhancement of renal cortex: a functional assessment of renovascular disease in patients with renal artery stenosis. J Magn Reson Imaging 18: 461–466Google Scholar
  10. 10.
    Grenier N, Basseau F, Ries M, Tyndal B, Jones R, Moonen C (2003) Functional MRI of the kidney. Abdom Imaging 28: 164–175Google Scholar
  11. 11.
    Hauger O, Delalande C, Trillaud H, Deminiere C, Quesson B, Kahn H, Cambar J, Combe C, Grenier N (1999) MR imaging of intrarenal macrophage infiltration in an experimental model of nephrotic syndrome. Magn Reson Med 41: 156–162Google Scholar
  12. 12.
    Hauger O, Delalande C, Deminiere C, Fouqueray B, Ohayon C, Garcia S, Trillaud H, Combe C, Grenier N (2000) Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217: 819–826Google Scholar
  13. 13.
    Jo SK, Hu X, Kobayashi H, Lizak M, Miyaji T, Koretsky A, Star RA (2003) Detection of inflammation following renal ischemia by magnetic resonance imaging. Kidney Int 64: 43–51Google Scholar
  14. 14.
    Juillard L, Lerman LO, Kruger DG, Haas JA, Rucker BC, Polzin JA, Riederer SJ, Romero JC (2004) Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int 65: 944–950Google Scholar
  15. 15.
    Lee VS, Rusinek H, Johnson G, Rofsky NM, Krinsky GA, Weinreb JC (2001) MR renography with low-dose gadopentetate dimeglumine: feasibility. Radiology 221: 371–379Google Scholar
  16. 16.
    Lenhard SC, Nerurkar SS, Schaeffer TR, Mirabile RC, Boyce RW, Adams DF, Jucker BM, Willette RN (2003) p38 MAPK Inhibitors ameliorate target organ damage in hypertension. Part 2: Improved renal function as assessed by dynamic contrast-enhanced magnetic resonance imaging. J Pharmacol Exp Ther 307(3): 939–946Google Scholar
  17. 17.
    Li L, Storey P, Kim D, Li W, Prasad P (2003) Kidneys in hypertensive rats show reduced response to nitric oxide synthase inhibition as evaluated by BOLD MRI. J Magn Reson Imaging 17: 671–675Google Scholar
  18. 18.
    Li LP, Storey P, Pierchala L, Li W, Polzin J, Prasad P (2004) Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging 19: 610–616Google Scholar
  19. 19.
    Li LP, Vu AT, Li BS, Dunkle E, Prasad PV (2004) Evaluation of intrarenal oxygenation by BOLD MRI at 3.0 T. J Magn Reson Imaging 20: 901–904Google Scholar
  20. 20.
    Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51: 353–361Google Scholar
  21. 21.
    Michaely HJ, Schoenberg SO, Ittrich C, Dikow R, Bock M, Guenther M (2004) Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Invest Radiol 39: 698–705Google Scholar
  22. 22.
    Michaely HJ, Schoenberg SO, Oesingmann N, Ittrich C, Friedrich D, Buhlig C, Struwe A, Rieger J, Reininger C, Samtleben W, Weiss M, Reiser MF (2006) Functional assessment of renal artery stenosis using dynamic MR perfusion measurements — feasibility. Radiology 238: 586–596Google Scholar
  23. 23.
    Muller MF, Prasad P, Siewert B, Nissenbaum MA, Raptopoulos V, Edelman RR (1994) Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 190: 475–478Google Scholar
  24. 24.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89: 5951–5955Google Scholar
  25. 25.
    Pedersen M, Wen JG, Shi Y, Beigi N, Christensen TB, Stodkilde-Jorgensen H, Frokiaer J (2003) The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI. APMIS Suppl: 29–34Google Scholar
  26. 26.
    Pedersen M, Dissing TH, Morkenborg J, Stodkilde-Jorgensen H, Hansen LH, Pedersen LB, Grenier N, Frokiaer J (2005) Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int 67: 2305–2312Google Scholar
  27. 27.
    Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94: 3271–3275Google Scholar
  28. 28.
    Prasad PV, Cannillo J, Chavez DR, Pinchasin ES, Dolan RP, Walovitch R, Edelman RR (1999) First-pass renal perfusion imaging using MS-325, an albumin-targeted MRI contrast agent. Invest Radiol 34: 566–571Google Scholar
  29. 29.
    Prasad PV, Epstein FH (1999) Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int 55: 294–298Google Scholar
  30. 30.
    Prasad PV, Priatna A (1999) Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol 29: 133–148Google Scholar
  31. 31.
    Prasad PV, Priatna A, Spokes K, Epstein FH (2001) Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging 13: 744–747Google Scholar
  32. 32.
    Ries M, Basseau F, Tyndal B, Jones R, Deminiere C, Catargi B, Combe C, Moonen CW, Grenier N (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging 17: 104–113Google Scholar
  33. 33.
    Roubidoux MA (1994) MR of the kidneys, liver, and spleen in paroxysmal nocturnal hemoglobinuria. Abdom Imaging 19: 168–173Google Scholar
  34. 34.
    Schoenberg SO, Bock M, Aumann S, Just A, Essig M, Floemer F, Knopp MV, van Kaick G (2000) Quantitative recording of renal function with magnetic resonance tomography. Radiologe 40: 925–937Google Scholar
  35. 35.
    Schoenberg SO, Aumann S, Just A, Bock M, Knopp MV, Johansson LO, Ahlstrom H (2003) Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): results in animals and humans with renal artery stenosis. Magn Reson Med 49: 288–298Google Scholar
  36. 36.
    Schoenberg SO, Bock M, Just A (2001) Experimental flow and perfusion measurements in the animal model with magnetic resonance tomography. Radiologe 41: 146–153Google Scholar
  37. 37.
    Semelka RC, Corrigan K, Ascher SM, Brown JJ, Colindres RE (1994) Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology 190: 149–152Google Scholar
  38. 38.
    Squillaci E, Manenti G, Cova M, Di Roma M, Miano R, Palmieri G, Simonetti G (2004) Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 24: 4175–4179Google Scholar
  39. 39.
    Squillaci E, Manenti G, Di Stefano F, Miano R, Strigari L, Simonetti G (2004) Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 23: 39–45Google Scholar
  40. 40.
    Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235: 911–917Google Scholar
  41. 41.
    Trillaud H, Degreze P, Combe C, Deminiere C, Palussiere J, Benderbous S, Grenier N (1995) USPIO-enhanced MR imaging of glycerol-induced acute renal failure in the rabbit. Magn Reson Imaging 13: 233–240Google Scholar
  42. 42.
    Vallee JP, Lazeyras F, Khan HG, Terrier F (2000) Absolute renal blood flow quantification by dynamic MRI and Gd-DTPA. Eur Radiol 10: 1245–1252Google Scholar
  43. 43.
    Vexler VS, Roberts TP, Rosenau W (1996) Early detection of acute tubular injury with diffusion-weighted magnetic resonance imaging in a rat model of myohemoglobinuric acute renal failure. Ren Fail 18: 41–57Google Scholar
  44. 44.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175: 489–493Google Scholar
  45. 45.
    Yang D, Ye Q, Williams DS, Hitchens TK, Ho C (2004) Normal and transplanted rat kidneys: diffusion MR imaging at 7 T. Radiology 231: 702–709Google Scholar
  46. 46.
    Ye Q, Yang D, Williams M, Williams DS, Pluempitiwiriyawej C, Moura JM, Ho C (2002) In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int 61: 1124–1135Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. J. Michaely
    • 1
    • 2
  • O. Dietrich
    • 1
  • M. F. Reiser
    • 1
  • S. O. Schoenberg
    • 1
  1. 1.Institut für klinische RadiologieLudwig-Maximilians-UniversitätMünchen
  2. 2.Institut für klinische RadiologieLudwig-Maximilians-UniversitätMünchen

Personalised recommendations