Advertisement

Arbuscular mycorrhizal fungi (Glomeromycota) communities in tropical savannas of Roraima, Brazil

  • Sidney Luiz Stürmer
  • Karl Kemmelmeier
  • Bruno Coutinho Moreira
  • Maria Catarina Megumi Kasuya
  • Gilmara Maria Duarte Pereira
  • Krisle da Silva
Original Article
  • 16 Downloads

Abstract

Savanna vegetation in the northern region of Brazil is jeopardized by several anthropogenic activities including cattle ranching and extensive agriculture, and soil biota of these ecosystems is virtually unknown. The soils in savannas are poor in nutrients, very acidic, and subject to drought, and under these conditions, arbuscular mycorrhizal fungi (AMF) are likely to play a key role on plant nutrition and improving soil structure. In this study, we surveyed AMF communities in five savanna locations in Roraima state, Northern Brazil. AMF species were identified using two approaches: field collected spores and trap cultures. Twenty-three AMF species were identified, including 21 species in field samples, 8 species in trap cultures, of which 15 and 2 were unique to field and trap culture samples, respectively. Gigaspora margarita, Dentiscutata heterogama, and Glomus sp1 were the most frequent species recovered from all locations. AMF communities were dominated by members of Gigasporaceae that accounted for 50 to 87% of the total species richness within each location. Spore numbers differed across locations and ranged from 5 to 25 spores 100 cm−3 soil. Redundancy analysis indicated that soil organic matter was the only selected predictor among soil parameters and correlated positively with occurrence of Glomus heterosporum. We conclude that savannas in Roraima harbor a high sporulating AMF species richness with communities dominated by members of Gigasporaceae and that organic carbon is an important edaphic factor influencing AMF community composition in this ecosystem.

Keywords

Mycorrhiza Neotropics MPN Species diversity Trap cultures 

Notes

Acknowledgements

We would like to thank Andressa Franzoi Sgrott for technical assistance and Chaiane Schoen and Alexandre Uhlmann for helping with the statistical analyses. SLS thanks the CNPq for a Research Assistantship (Process 302343/2012-1).

Funding information

This study was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant No. 483.657/2011-5).

References

  1. Alexander M (1965) Most-probable-number method for microbial populations. In: Black CA (ed) Methods in soil analysis. American Society of Agronomy, Madison, Wisconsin, pp 1467–1472Google Scholar
  2. Alguacil MM, Lozano Z, Campoy MJ, Roldán A (2010) Phosporus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem 42:1114–1122CrossRefGoogle Scholar
  3. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  4. Assis CR, Saggin Júnior O, Paulino HB, Stürmer SL, Siqueira JO, Carneiro MAC (2014) Fungos micorrízicos arbusculares em campos de murundus após a conversão para sistemas agrícolas no Cerrado. Revista Brasileira de Ciência do Solo 38:1703–1711CrossRefGoogle Scholar
  5. Barbosa RI, Campo C, Pinto F, Fearnside PM (2007) The “Lavrados” of Roraima: biodiversity and conservation of Brazil’s amazonian savannas. Funct Ecosyst Comm 1:29–41Google Scholar
  6. Barbosa RI, Bacelar-Lima CG (2008) Notas sobre a diversidade de plantas e fitofisionomias em Roraima através do banco de dados do Herbário INPA. Amazônia: Ciência and Desenvolvimento 4:131–154Google Scholar
  7. Blanchet G, Legendere P, Borcard D (2008) Forward selection of spatial explanatory variables. Ecology 89:2623–2632.  https://doi.org/10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  8. Blaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  9. Bononi VLR, Trufem SFB (1983) Endomicorrizas vesiculo-arbusculares do cerrado da Reserva Biológica de Moji-Guaçu, SP, Brasil. Rickia 10:55–84Google Scholar
  10. Brown JH, Lomolino MV (2008) Biogeography. Sinauer Associates, Inc Publishers, MassachusettsGoogle Scholar
  11. Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370:419–433CrossRefGoogle Scholar
  12. Carneiro-Filho A (1990) “Roraima Savannas”: climax situation or botanic relic. In: Prost MT (Org) Évolution des Littoraux de Guyane et de la Zone Caraibe Méridionale Pendant le Quaternarie. Cayenne, Guiane. pp. 31–48Google Scholar
  13. Carvalho F, de Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  14. Costa NL, Moraes A, Oliveira RA, Gianluppi V, Bendahan AB, Magalhães JA (2011) Rendimento potencial de pastagens de Trachypogon plumosus nos cerrados de Roraima. Revista Agro@mbiente 5:200–206CrossRefGoogle Scholar
  15. Cotton TEA, Fitter AH, Miller RM, Dumbrell AJ, Helgason T (2015) Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytol 205:1598–1607CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cuenca G, Lovera M (1992) Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Can J Bot 70:73–79CrossRefGoogle Scholar
  17. Cuenca G, Andrade Z, Escalante G (1998) Diversity of glomalean spores from natural, disturbed and revegetated communities growing on nutrient-poor tropical soils. Soil Biol Biochem 30:711–719CrossRefGoogle Scholar
  18. Dray S, Legendre P, Blanchet G (2016) Packfor: forward selection with permutation. R package version 0.0-8/r136. https://R-Forge.R-project.org/projects/sedar/
  19. Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans British Mycol Soc 84:679–684Google Scholar
  21. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530CrossRefPubMedGoogle Scholar
  22. Hammer Ø, Harper DAT, Rya PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9pp http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  23. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344CrossRefGoogle Scholar
  24. Hernández-Hernández RM, Roldán A, Caravaca F, Rodriguez-Caballero G, Torres MP, Maestre FT, Alguacil MM (2017) Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon. Sci Total Environ 575:1203–1210CrossRefPubMedGoogle Scholar
  25. Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  26. House GL, Ekanayake S, Ruan Y, Schütte UME, Kaonongbua W, Fox G, Ye Y, Bever JD (2016) Phylogenetically structured differences in rRNA gene sequence variation among species of arbuscular mycorrhizal fungi and their implications for sequence clustering. Appl Environ Microbiol 82:4921–4930CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huber O (1987) Neotropical savannas: their flora and vegetation. TREE 2:67–70PubMedGoogle Scholar
  28. Jobim K, Oliveira BIS, Goto BT (2016) Checklist of the glomeromycota in Brazilian savanna. Mycotaxon (in press)Google Scholar
  29. Johnson NC, Zak DR, Tilman D, Pfleger FL (1991) Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia 86:349–358CrossRefPubMedGoogle Scholar
  30. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:488–505CrossRefGoogle Scholar
  31. Lee PJ, Koske RE (1994) Gigaspora gigantea – parasitism of spores by fungi and actinomycetes. Mycol Res 98:458–466CrossRefGoogle Scholar
  32. Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton KB (2007) Role of niche restrictions and dispersal in the composition or arbuscular mycorrhizal fungal communities. J Ecol 95:95–105CrossRefGoogle Scholar
  33. Lovera M, Cuenca G (1996) Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–118CrossRefGoogle Scholar
  34. Lovera M, Cuenca G (2007) Diversidad de hongos micorrizicos arbusculaes (HMA) y potencial micorrízico del suelo de una sabana natural y unasabana perturbada de La Gran Sabana, Venezuela. Interciencia 32:108–114Google Scholar
  35. Meneses MENS, Costa ML (2012) Caracterização mineralógica e química dos regolitos de uma área de transição savana-floresta em Roraima: uma análise da evolução da paisagem. Revista Brasileira de Geociências 42:42–56Google Scholar
  36. Molina R, Horton TR, Trappe JM, Marcot BG (2011) Addressing uncertainty: how to conserve and manage rare or little-known fungi. Fungal Ecol 4:134–146CrossRefGoogle Scholar
  37. Muchane MN, Muchane M, Mugoya C, Masiga CW (2012) Effect of land use system on arbuscular mycorrhiza fungi in Maasai Mara ecosystem, Kenya. Afr J Microbiol Res 6:3904–3916Google Scholar
  38. Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from diferente agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268CrossRefGoogle Scholar
  39. Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: Community Ecology Package. R package version 2. 3–0. http://CRAN.R-project.org/package=vegan
  40. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938CrossRefGoogle Scholar
  41. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790CrossRefGoogle Scholar
  42. R Core Team (2015) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/ Google Scholar
  43. Ramos-Zapata JA, Zapata-Trujillo R, Ortíz-Diaz JJ, Guadarrama P (2011) Arbuscular mycorrhizas in a tropical coastal dune system in Yucatan, Mexico. Fungal Ecol 4:256–261CrossRefGoogle Scholar
  44. Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531CrossRefPubMedGoogle Scholar
  45. Rodríguez-Echeverría S, Teixeira H, Correia M, Timóteo S, Heleno R, Öpik M, Moora M (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390CrossRefPubMedGoogle Scholar
  46. SAS Institute (1995) JMP statistics and graphics guide. SAS Institute Inc., Cary, NC, USAGoogle Scholar
  47. Siqueira JO, Colozzi-Filho A, Oliveira E (1989) Ocorrência de micorrizas vesicular-arbusculares em agro e ecossistemas do estado de Minas Gerais. Pesq Agrop Brasileira 24:1499–1506Google Scholar
  48. Silva IR, Mello CMA, Neto RAF, Silva DKA, Melo AL, Oehl F, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl Soil Ecol 84:166–175CrossRefGoogle Scholar
  49. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  50. Souza RG, Maia LC, Sales MF, Trufem SFB (2003) Diversity and infectivity potencial of arbuscular mycorrhizal fungi in area of Caatinga in the Xingó, Region, State of Alagoas. Braz J Botany 26:49–60CrossRefGoogle Scholar
  51. Stürmer SL, Stürmer R, Pasqualini D (2013) Taxonomic diversity and community structure of arbuscular mycorrhizal fungi (Phylum Glomeromycota) in three maritime sand dunes in Santa Catarina state, South Brazil. Fungal Ecol 6:27–36CrossRefGoogle Scholar
  52. Stutz JC, Morton JB (1996) Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid ecosystems. Can J Bot 74:1883–1996CrossRefGoogle Scholar
  53. Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195CrossRefPubMedGoogle Scholar
  54. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Boletim Técnico No 5. UFRGS, Porto AlegreGoogle Scholar
  55. Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worlwide: a strategic perspective for their in situ conservation. Mycorrhiza 22:81–97CrossRefPubMedGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciências NaturaisUniversidade Regional de BlumenauBlumenauBrazil
  2. 2.Colegiado de Engenharia AgronômicaUniversidade Federal do Vale do São FranciscoPetrolinaBrazil
  3. 3.Departamento de Microbiologia, Lab de Associações Micorrízicas/BIOAGROUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Centro de Estudos da BiodiversidadeUniversidade Federal de RoraimaBoa VistaBrazil
  5. 5.Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)ColomboBrazil

Personalised recommendations