Advertisement

Mycological Progress

, Volume 18, Issue 1–2, pp 215–228 | Cite as

Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils

  • Alena Kubátová
  • Martina Hujslová
  • Jens C. Frisvad
  • Milada Chudíčková
  • Miroslav KolaříkEmail author
Original Article
  • 97 Downloads

Abstract

Penicillium oxalicum is a frequently isolated fungus exhibiting a wide range of physiological activities that are of relevance in agriculture, biotechnology, food quality assessments, and medicine. Although widely studied, this fungus is usually identified on the basis of morphological characters but its taxonomy has never been systematically revised. In this study, we revised a set of Penicillium isolates from various sources including P. oxalicum-like strains obtained from acidic and saline soils in the Soos Nature Reserve (Czech Republic). Two phylogenetic sister species of Penicillium oxalicum are illustrated and described as Penicillium diatomitis sp. nov. (CCF 3904T) and Penicillium soosanum sp. nov. (CCF 3778T). Both species can be distinguished from P. oxalicum based on molecular data, morphological characters, and extrolite profiles. Penicillium diatomitis mimics P. oxalicum by its macro- and micromorphology but acid production on CREA distinguishes between the two.

Keywords

Soil fungi Extreme habitats Biotechnology Penicillium subgenus Aspergilloides Dierckx Section Lanata-Divaricata Thom 

Notes

Acknowledgements

BIOCEV – Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University No. CZ.1.05/1.1.00/02.0109, from the European Regional Development Fund in the Czech Republic. We thank Dr. Miroslav Hyliš for technical assistance with scanning electron microscopy. We also thank to anonymous reviewers for the valuable comments.

Supplementary material

11557_2018_1420_MOESM1_ESM.pdf (314 kb)
Fig. S1 Maximum-likelihood phylogenetic tree summarizing the variability of P. oxalicum TUB2 sequences deposited in NCBI GenBank database. (PDF 313 kb)
11557_2018_1420_MOESM2_ESM.pdf (363 kb)
Fig. S2 Penicillium asturianum (CCF 2062T). a Colonies on CYA after 7 days at 25 °C. b Colonies on MEA after 7 days at 25 °C. c Colonies on CYA after 7 days at 37 °C. d Colonies on CREA after 7 days at 25 °C. e, f Conidiophores. g Conidia. h Conidia, SEM. Scale bars: e–f = 10 μm; g = 5 μm; h = 2 μm. (PDF 362 kb)

References

  1. Bao J, Luo J-F, Qin X-C, Xu X-Y, Zhang X-Y, Tu Z-C, Qi S-H (2014) Dihydrothiophene-condensed chromones from a marine-derived fungus Penicillum oxalicum and their structure-bioactivity relationship. Bioorganic Med Chem Lett 24:2433–2436Google Scholar
  2. Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters—a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 77:186–199Google Scholar
  3. Chen G, Jiang Z, Bai J, Wang HF, Zhang ZL, Pei YH (2015) Isolation, structure determination, in vivo/vitro assay and docking study of a xanthone with antitumor activity from fungus Penicillium oxalicum. Rec Nat Prod 9:184–189Google Scholar
  4. Cheng Z, Chen D, Lu B, Wei Y, Xian L et al (2016) A novel acid-stable endo-polygalacturonase from Penicillium oxalicum CZ1028: purification, characterization, and application in the beverage industry. J Microbiol Biotechnol 26:989–−998Google Scholar
  5. Chowdhary A, Kathuria S, Agarwal K, Sachdeva N, Singh PK, Jain S, Meis JF (2014) Voriconazole-resistant Penicillium oxalicum: an emerging pathogen in immunocompromised hosts. Open Forum Infect Dis 1(2):ofu029Google Scholar
  6. Currie JN, Thom C (1915) An oxalic acid producing Penicillium. J Biol Chem 22:287–293Google Scholar
  7. De Cal A, Pascual S, Melgarejo P (1997) Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt. Plant Pathol 46:72–79Google Scholar
  8. De Cal A, Redondo C, Sztejnberg A, Melgarejo P (2008) Biocontrol of powdery mildew by Penicillium oxalicum in open-field nurseries of strawberries. Biol Control 47:103–107Google Scholar
  9. De Cal A, Sztejnberg A, Sabuquillo P, Melgarejo P (2009) Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biol Control 51:480–486Google Scholar
  10. Domsch KH, Gams W, Anderson T-H (2007) Compendium of soil fungi, 2nd edn. IHW Verlag, EchingGoogle Scholar
  11. Fang HM, Tan SM (1986) Pathogenic fungi of several insect pests on sugarcane. Microbiol China 13:97–100Google Scholar
  12. Fassatiová O (1986) Moulds and filamentous fungi in technical microbiology. Elsevier, AmsterdamGoogle Scholar
  13. Felsenstein J (1989) PHYLIP - phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  14. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–173Google Scholar
  15. Frisvad JC, Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode-array detection). J Chromatogr 404:195–214Google Scholar
  16. Frisvad JC, Samson RA, Stolk AC (1990) Disposition of recently described species of Penicillium. Persoonia 14:209–232Google Scholar
  17. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548Google Scholar
  18. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330Google Scholar
  19. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321Google Scholar
  20. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51Google Scholar
  21. Houbraken J, Lopez-Quintero CA, Frisvad JC, Boekhout T, Theelen B, Franco-Molano AE, Samson RA (2011) Penicillium araracuarense sp. nov., Penicillium elleniae sp. nov., Penicillium penarojense sp. nov., Penicillium vanderhammenii sp. nov. and Penicillium wotroi sp. nov., isolated from leaf litter. Int J Syst Evol Microbiol 61:1462–1475Google Scholar
  22. Houbraken J, Visagie CM, Meijer M, Frisvad JC, Busby PE, Pitt JI, Seifert KA, Louis-Seize G, Demirel R, Yilmaz N, Jacobs K, Christensen M, Samson RA (2014) A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud Mycol 78:373–451Google Scholar
  23. Hujslová M, Kubátová A, Chudíčková M, Kolařík M (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycol Prog 9:1–15Google Scholar
  24. Iacumin L, Chiesa L, Boscolo D, Manzano M, Cantoni C, Orlic S, Comi G (2009) Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol 26:65–70Google Scholar
  25. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. In: Posada D (ed) Bioinformatics for DNA sequence analysis, vol 537. Methods in molecular biology. Humana Press Inc, Totowa, pp 39–64Google Scholar
  26. Kildgaard S, Mansson M, Dosen I, Klitgaard A, Frisvad JC, Larsen TO, Nielsen KF (2014) Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and MS/HRMS library. Marine Drugs 12:3681–3705Google Scholar
  27. Kim HY, Park HM, Lee CH (2012) Mass spectrometry-based chemotaxonomic classification of Penicillium species (P. echinulatum, P. expansum, P. solitum, and P. oxalicum) and its correlation with asntioxidant activity. J Microbiol Methods 90:327–335Google Scholar
  28. Kinoshita T, Minato S (1978) Structural studies on anthglutin, an inhibitor of g-glutamyl transpeptidase, from Penicillium oxalicum. Bull Chem Soc Jpn 51:3282–3285Google Scholar
  29. Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC-DAD-QTOF—screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406:1933–1943Google Scholar
  30. Kolařík M, Spakowicz DJ, Gazis R, Shaw J, Kubátová A, Nováková A, Chudíčková M, Forcina GC, Kang KW, Kelnarová I, Skaltsas D, Portero CE, Strobel SA, Narváez-Trujillo A (2017) Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Syst Evol 303:35–50Google Scholar
  31. Kozakiewicz Z (1992) Penicillium oxalicum. IMI description of fungi and bacteria no. 1107. Mycopathologia 117:177–178Google Scholar
  32. Kuo LMY, Chen KY, Hwang XY, Chen JL, Liu YY, Liaw CC, Ye PH, Chou CJ, Shen CC, Kuo YH (2005) DNA topoisomerase I inhibitor, ergosterol peroxide from Penicillium oxalicum. Planta Med 71:77–79Google Scholar
  33. Kurakake M, Moriyama Y, Sunouchi R, Nakatani S (2010) Enzymatic properties and transglycosylation of α-galactosidase from Penicillium oxalicum SO. Food Chem 126:177–182Google Scholar
  34. Larena I, Melgarejo P (2009) Development of a method for detection of the biocontrol agent Penicillium oxalicum strain 212 by combining PCR and a selective medium. Plant Dis 93:919–928Google Scholar
  35. Leonard LM (2006) Melzer’s, Lugol’s or iodine for identification of white-spored Agaricales? McIlvainea 16:43–51Google Scholar
  36. Li J, Zhang YX, Chen LX, Dong ZH, Di X, Qiu F (2010) A new xanthone from Penicillium oxalicum. Chem Nat Compd 46:216–218Google Scholar
  37. Li Q-Q, Dang L-Z, Zhang Y-P, Jiang J-X, Zhang C-M, Xiang N-J, Yang HY, Du G, Duan Y-Q (2015) Isocoumarins from the fermentation products of a plant entophytic fungus Penicillium oxalicum. J Asian Nat Prod Res 17:876–881Google Scholar
  38. Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, Hu Y, Wang S, Hu S (2016) A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 6:25313Google Scholar
  39. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808Google Scholar
  40. Liu B, Wang H-F, Zhang L-H, Liu F, He F-J, Bai J, Hua H-M, Chen G, Pei Y-H (2015) New compound with DNA topo I inhibitory activity purified from Penicillium oxalicum HSY05. Nat Prod Res 29:2197–2202Google Scholar
  41. Minato S (1979) Isolation of antglutin, an inhibitor of γ-glutamyl transpeptidase from Penicillium oxalicum. Arch Biochem Biophys 192:235–240Google Scholar
  42. Nagel DW, Pqachler KGR, Steyn PS, Wessels PL, Gafner G, Kruger GJ (1974) X-ray structure of oxaline: a novel alkaloid from Penicillium oxalicum. J Chem Soc, Chem Commun No 24:1021–1022Google Scholar
  43. Nagel DW, Pachler KGR, Steyn PS, Vleggaar R, Wessels PL (1976) The chemistry and 13C NMR assignments of oxaline, a novel alkaloid from Penicillium oxalicum. Tetrahedron 32:2625–2631Google Scholar
  44. NBS/ISCC Color System (2017) http://tx4.us/nbs-iscc.htm. Accessed 18 January 2017
  45. Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO (2011) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74:2338–2348Google Scholar
  46. O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233Google Scholar
  47. O’Neill TM, Bagabe M, Ann DM (1991) Aspects of biology and control of a stem rot of cucumber caused by Penicillium oxalicum. Plant Pathol 40:78–84Google Scholar
  48. Park MS, Fong JJ, Oh S-Y, Kwon KK, Sohn JH, Lim YW (2014) Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties. Anton Leeuw 106:331–345Google Scholar
  49. Park MS, Lee S, Oh S-Y, Cho GY, Lim YW (2016) Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol 54:646–654Google Scholar
  50. Peterson SW (2000) Phylogenetic analysis of Penicillium species based on ITS and LSU-rDNA nucleotide sequences. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Australia etc., pp 163–178Google Scholar
  51. Peterson SW, Varga J, Frisvad JC, Samson RA (2008) Phylogeny and subgeneric taxonomy of Aspergillus. In: Varga J, Samson RA (eds) Aspergillus in the genomic era. Wageningen Academic Publishers, Wageningen, pp 33–56Google Scholar
  52. Pitt JI (1980) [“1979”] The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, LondonGoogle Scholar
  53. Pitt JI (2002) Biology and ecology of toxigenic Penicillium species. In: De Vries JW, Trucksess MW, Jackson LS (eds) Mycotoxins and food safety. Kluwer Academic, Plenum Publishers, New York, pp 29–41Google Scholar
  54. Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, Dordrecht etc.Google Scholar
  55. Pitt JI, Samson RA, Frisvad JC (2000) List of accepted species and their synonyms in the family Trichocomaceae. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Australia etc., pp 9–49Google Scholar
  56. Ramírez C (1982) Manual and atlas of the Penicillia. Elsevier Biomedical Press, Amsterdam etcGoogle Scholar
  57. Raper KB, Thom C (1949) A manual of the Penicillia. The Williams and Wilkins Comp, BaltimoreGoogle Scholar
  58. Rivera KG (2009) Taxonomy, systematics and DNA barcoding of selected Penicillium groups. Dissertation, Ottawa-Carleton Institute of BiologyGoogle Scholar
  59. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574Google Scholar
  60. Sabuquillo P, De Cal A, Melgarejo P (2006) Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biol Control 37:256–265Google Scholar
  61. Sabuquillo P, Sztejnberg A, De Cal A, Melgarejo P (2009) Relationship between number and type of adhesions of Penicillium oxalicum conidia to tomato roots and biological control of tomato wilt. Biol Control 48:244–251Google Scholar
  62. Santamarina MP, Roselló J, Llacer R, Sanchis V (2002) Antagonistic activity of Penicillium oxalicum Currie and Thom, Penicillium decumbens Thom and Trichoderma harzianum Rifai isolates against fungi, bacteria and insects in vitro. Rev Iberoam Micol 19:99–103Google Scholar
  63. Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrasekaran G, Syed A, Hodhod MS, Ameen F, Sivaperumal S (2017) Isolation of limonoid compouns (hamisonine) from endophytic fungi Penicillium oxalicum LA-1 (KX622790) of Limonia acidissima L. for its larvicidal efficacy against LF vector, Culex quinquefasciatus (Diptera: Culicidae). Environ Sci Pollut Res 24:21272–21282Google Scholar
  64. Sempere F, Santamarina MP (2008) Suppression of Nigrospora oryzae (Berk. & Broome) Petch by an aggressive mycoparasite and competitor, Penicillium oxalicum Currie & Thom. Int J Food Microbiol 122:35–43Google Scholar
  65. Sempere F, Santamarina MP (2010) Study of the interactions between Penicillium oxalicum Currie & Thom and Alternaria alternata (Fr.) Keissler. Braz J Microbiol 41:700–706Google Scholar
  66. Shi S, Guo KB, Wang SG, Chen H, Min JB, Qi SH, Zhao W, LI WR (2017) Toxicity study of oxalicumone A, derided from a marine-derived fungus Penicillium oxalicum, in cultures renal epithelial cells. Mol Med Rep 15:2611–26129Google Scholar
  67. Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47:30–34Google Scholar
  68. Sklenář F, Jurjević Ž, Zalar P, Frisvad JC, Visagie CM, Kolařík M, Houbraken J, Chen AJ, Yilmaz N, Seifert KA, Coton M, Déniel F, Gunde-Cimerman N, Samson RA, Peterson SW, Hubka V (2017) Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Stud Mycol 88:161–236Google Scholar
  69. Song W, Han X, Qian Y, Liu G, Yao G, Zhong Y, Qu Y (2016) Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels 9:68Google Scholar
  70. Steyn PS (1970) The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron 26:51–57Google Scholar
  71. Steyn PS, Vleggaar R (1983) Roquefortine, an intermediate in the biosynthesis of oxaline in cultures of Penicillium oxalicum. J Chem Soc Chem Commun 0:560–561Google Scholar
  72. Stolk AC, Samson RA, Frisvad JC, Filtenborg O (1990) The systematics of the terverticillate Penicillia. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Springer US, Boston, MA, pp 121–137Google Scholar
  73. Sun YL, Bao J, Liu KS, Zhang XY, He F, Wang YF, Nong XH, Qi SH (2013) Cytotoxic dihydrothiophene-condensed chromones from the marine-derived fungus Penicillium oxalicum. Planta Med 79:1474–1479Google Scholar
  74. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577Google Scholar
  75. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6. 0. Mol Biol Evol 30:2725–2729Google Scholar
  76. Tenuta A (2006) Identifying corn ear molds. Ontario Ministry of Agriculture, Food and Rural Affairs. http://www.omafra.gov.on.ca/english/crops/field/news/croppest/2006/17cpo06a1.htm. Accessed 29 August 2007
  77. Ubillas R, Barnes CL, Gracz H, Rottinghaus GE, Tempesta MS (1989) X-ray crystal structure of oxalicine A, a novel alkaloid from Penicillium oxalicum. J Chem Soc Chem Commun 21:1618–1619Google Scholar
  78. Vega FE, Posada F, Peterson SW, Gianfagna TJ, Chaves F (2006) Penicillium species endophytic in coffee plants and ochratoxin A production. Mycologia 98:31–42Google Scholar
  79. Vesper SJ, Wymer LJ, Meklin T, Varma M, Stott R, Richardson M, Haugland RA (2005) Comparison of populations of mould species in homes in the UK and USA using mould-specific quantitative PCR. Lett Appl Microbiol 41:367–373Google Scholar
  80. Visagie CM, Houbraken J, Seifert KA, Samson RA, Jacobs K (2015) Four new Penicillium species isolated from the fynbos biome in South Africa, including a multigene phylogeny of section Lanata-Divaricata. Mycol Prog 14:96Google Scholar
  81. Visagie CM, Houbraken J, Dijksterhuis J, Seifert KA, Jacobs K, Samson RA (2016) A taxonomic review of Penicillium species producing conidiophores with solitary phialides, classified in section Torulomyces. Persoonia 36:134–155Google Scholar
  82. Wang PL, Li DY, Xiwe LR, Wu X, Hua HM, Zi ZL (2013a) Novel decaturin alkaloids from the marine-derived fungus Penicillium oxalicum. Nat Prod Commun 8:1397–1398Google Scholar
  83. Wang YH, Wy XM, ZhuYP YXD, Li YR (2013b) Determination of secalonic acid a from endophytic fungus Penicillium oxalicum by high performance liquid chromatography. Chin J Anal Chem 41:575–579Google Scholar
  84. Wang J, Wang Q-L, Nong X-H, Zhang X-Y, Xu X-Y, Qi S-H, Wang Y-F (2016) Oxalicumone A, a new dihydrothiophene-condensed sulfur chromone induces apoptosis in leukemia cells through endoplasmatic reticulum stress pathway. Eur J Pharmacol 783:47–55Google Scholar
  85. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  86. Xu B, Zou K, Cheng F (2014) Alkaloids from Penicillium oxalicum, a fungus residing in Acrida cinerea. Adv Mater Res 881–883:442–445Google Scholar
  87. Xu Q-S, Yan Y-S, Feng J-X (2016) Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol Biofuels 9:216Google Scholar
  88. Yang L, Xie J, Jiang D, Fu Y, Li G, Lin F (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915Google Scholar
  89. Yang Z, Huang N, Xu B, Huang W, Xie T, Cheng F, Zou K (2016) Cytotoxic 1,3-thiazole and 1,2,4-thiadiazole alkaloids from Penicillium oxalicum: structural elucidation and total synthesis. Molecules 21:232Google Scholar
  90. Yassin MA, El-Samawaty AR, Bahkali A, Moslem M, Abd-Elsalam KA, Hyde KD (2010) Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Divers 44:45–52Google Scholar
  91. Zhou Q-X, Houbraken J, Li Q-R, Xu Y, Hyde KD, McKenzie EHC, Wang Y (2016) Diversity of Penicillium species isolated from heavy metal polluted soil in Guizhou Province. China Phytotaxa 273:167–174Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany, Faculty of ScienceCharles UniversityPraha 2Czech Republic
  2. 2.Laboratory of Fungal BiologyInstitute of Microbiology of the Czech Academy of SciencesPraha 4Czech Republic
  3. 3.Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
  4. 4.Laboratory of Fungal Genetics and MetabolismInstitute of Microbiology of the Czech Academy of SciencesPraha 4Czech Republic

Personalised recommendations