Advertisement

Mycological Progress

, Volume 17, Issue 8, pp 953–966 | Cite as

Novel Cryphonectriaceae from La Réunion and South Africa, and their pathogenicity on Eucalyptus

  • Daniel B. Ali
  • Seonju Marincowitz
  • Michael J. Wingfield
  • Jolanda Roux
  • Pedro W. Crous
  • Alistair R. McTaggart
Original Article
  • 68 Downloads

Abstract

Fungi in the Cryphonectriaceae are important canker pathogens of plants in the Melastomataceae and Myrtaceae (Myrtales). These fungi are known to undergo host jumps or shifts. In this study, fruiting structures resembling those of Cryphonectriaceae were collected and isolated from dying branches of Syzygium cordatum and root collars of Heteropyxis natalensis in South Africa, and from cankers on the bark of Tibouchina grandifolia in La Réunion. A phylogenetic species concept was used to identify the fungi using partial sequences of the large subunit and internal transcribed spacer regions of the nuclear ribosomal DNA, and two regions of the β-tubulin gene. The results revealed a new genus and species in the Cryphonectriaceae from South Africa that is provided with the name Myrtonectria myrtacearum gen. et sp. nov. Two new species of Celoporthe (Cel.) were recognised from La Réunion and these are described as Cel. borbonica sp. nov. and Cel. tibouchinae sp. nov. The new taxa were mildly pathogenic in pathogenicity tests on a clone of Eucalyptus grandis. Similar to other related taxa in the Cryphonectriaceae, they appear to be endophytes and latent pathogens that could threaten Eucalyptus forestry in the future.

Keywords

Diaporthales Die-back Myrtales New taxa Stem canker Tree disease Taxonomic novelties: Myrtonectria myrtacearum gen. et sp. nov., Celoporthe borbonica sp. nov., Celoporthe tibouchinae sp. nov. 

Notes

Funding information

We thank the members of the Tree Protection Co-operative Programme (TPCP), the THRIP initiative of the Department of Trade and Industry, and the Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB) for financial assistance that made this study possible.

References

  1. Begoude AD, Gryzenhout M, Wingfield MJ, Roux J (2010) Aurifilum, a new fungal genus in the Cryphonectriaceae from Terminalia species in Cameroon. Antonie Van Leeuwenhoek 98:263–278CrossRefPubMedGoogle Scholar
  2. Beier GL, Hokanson SC, Bates ST, Blanchette RA (2015) Aurantioporthe corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia. Mycologia 107:66–79CrossRefPubMedGoogle Scholar
  3. Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ (2016) Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants 8:plw076CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burgess TI, Wingfield MJ (2017) Pathogens on the move: a 100-year global experiment with planted eucalypts. BioScience 67:14–25CrossRefGoogle Scholar
  5. Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94:1017–1031CrossRefPubMedGoogle Scholar
  6. Chen S, Gryzenhout M, Roux J, Xie Y, Wingfield MJ, Zhou X (2011) Novel species of Celoporthe from Eucalyptus and Syzygium trees in China and Indonesia. Mycologia 103:1384–1410CrossRefPubMedGoogle Scholar
  7. Chen S, Wingfield MJ, Roux J (2013a) Diversimorbus metrosiderotis gen. et sp. nov. and three new species of Holocryphia (Cryphonectriaceae) associated with cankers on native Metrosideros angustifolia trees in South Africa. Fungal Biol 117:289–310CrossRefPubMedGoogle Scholar
  8. Chen SF, Liu QL, Li GQ, Wingfield MJ, Roux J (2017) A new genus of Cryphonectriaceae isolated from Lagerstroemia speciosa in southern China. Plant Pathol 67:107–123CrossRefGoogle Scholar
  9. Chen SF, Wingfield MJ, Li GQ, Liu FF (2016) Corticimorbus sinomyrti gen. et sp. nov. (Cryphonectriaceae) pathogenic to native Rhodomyrtus tomentosa (Myrtaceae) in South China. Plant Pathol 65:1254–1266CrossRefGoogle Scholar
  10. Chen SF, Wingfield MJ, Roets F, Roux J (2013b) A serious canker disease caused by Immersiporthe knoxdaviesiana gen. et sp. nov. (Cryphonectriaceae) on native Rapanea melanophloeos in South Africa. Plant Pathol 62:667–678CrossRefGoogle Scholar
  11. Conradie E, Swart WJ, Wingfield MJ (1990) Cryphonectria canker of Eucalyptus, an important disease in plantation forestry in South Africa. South Afr For J 152:43–49Google Scholar
  12. Crane C, Burgess TI (2013) Luteocirrhus shearii gen. sp. nov. (Diaporthales, Cryphonectriaceae) pathogenic to Proteaceae in the South Western Australian Floristic Region. IMA Fungus 4:111–122CrossRefPubMedPubMedCentralGoogle Scholar
  13. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  14. Gryzenhout M, Myburg H, van der Merwe NA, Wingfield BD, Wingfield MJ (2004) Chrysoporthe, a new genus to accommodate Cryphonectria cubensis. Stud Mycol 50:119–141Google Scholar
  15. Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ (2005a) Chrysoporthe doradensis sp. nov. pathogenic to Eucalyptus in Ecuador. Fungal Divers 20:39–57Google Scholar
  16. Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ (2005b) Rostraureum tropicale gen. sp. nov. (Diaporthales) associated with dying Terminalia ivorensis in Ecuador. Mycol Res 109:1029–1044CrossRefPubMedGoogle Scholar
  17. Gryzenhout M, Myburg H, Hodges CS, Wingfield BD, Wingfield MJ (2006a) Microthia, Holocryphia and Ursicollum, three new genera on Eucalyptus and Coccoloba for fungi previously known as Cryphonectria. Stud Mycol 55:35–52CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ (2006b) Cryphonectriaceae (Diaporthales), a new family including Cryphonectria, Chrysoporthe, Endothia and allied genera. Mycologia 98:239–249CrossRefPubMedGoogle Scholar
  19. Gryzenhout M, Myburg H, Rodas CA, Wingfield BD, Wingfield MJ (2006c) Aurapex pecinillata sp. nov. from native Miconia theaezans and Tibouchina spp. in Colombia. Mycologia 98:105–115CrossRefPubMedGoogle Scholar
  20. Gryzenhout M, Wingfield BD, Wingfield MJ (2009) Taxonomy, phylogeny, and ecology of bark-inhabiting and tree-pathogenic fungi in the Cryphonectriaceae. American Phytopathological Society, MinnesotaGoogle Scholar
  21. Gryzenhout M, Tarigan M, Clegg PA, Wingfield MJ (2010) Cryptometrion aestuescens gen. sp. nov. (Cryphonectriaceae) pathogenic to Eucalyptus in Indonesia. Australas Plant Pathol 39:161–169CrossRefGoogle Scholar
  22. Heath RN, Gryzenhout M, Roux J, Wingfield MJ (2006) Discovery of the canker pathogen Chrysoporthe austroafricana on native Syzygium spp. in South Africa. Plant Dis 90:433–438CrossRefGoogle Scholar
  23. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Bioinformatics for DNA sequence analysis. Posada D, Humana Press 537:39–64Google Scholar
  24. Mausse-Sitoe SND, Rodas CA, Wingfield MJ, Chen SF, Roux J (2016) Endophytic Cryphonectriaceae on native Myrtales: possible origin of Chrysoporthe canker on plantation-grown Eucalyptus. Fungal Biol 120:827–835CrossRefPubMedGoogle Scholar
  25. Myburg H, Wingfield BD, Wingfield MJ (1999) Phylogeny of Cryphonectria cubensis and allied species inferred from DNA analysis. Mycologia 91:243–250CrossRefGoogle Scholar
  26. Myburg H, Gryzenhout M, Heath R, Roux J, Wingfield BD, Wingfield MJ (2002a) Cryphonectria canker on Tibouchina in South Africa. Mycol Res 106:1299–1306CrossRefGoogle Scholar
  27. Myburg H, Gryzenhout M, Wingfield BD, Wingfield MJ (2002b) β-Tubulin and histone H3 gene sequences distinguish Cryphonectria cubensis from South Africa, Asia, and South America. Can J Bot 80:590–596CrossRefGoogle Scholar
  28. Myburg H, Gryzenhout M, Wingfield BD, Milgroom MG, Kaneko S, Wingfield MJ (2004) DNA sequence data and morphology define Cryphonectria species in Europe, China, and Japan. Can J Bot 82:1730–1743CrossRefGoogle Scholar
  29. Nakabonge G, Gryzenhout M, Roux J, Wingfield BD, Wingfield MJ (2006a) Celoporthe dispersa gen. et sp. nov. from native Myrtales in South Africa. Stud Mycol 55:255–267CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nakabonge G, Roux J, Gryzenhout M, Wingfield MJ (2006b) Distribution of Chrysoporthe canker pathogens on Eucalyptus and Syzygium spp. in eastern and southern Africa. Plant Dis 90:734–740CrossRefGoogle Scholar
  31. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, Kew, SurreyGoogle Scholar
  32. Rodas CA, Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ (2005) Discovery of the Eucalyptus canker pathogen Chrysoporthe cubensis on native Miconia (Melastomataceae) in Colombia. Plant Pathol 54:460–470CrossRefGoogle Scholar
  33. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  34. SAS_Institute_Inc (1999) SAS/STAT ® User’s Guide, Version 8. SAS Institute Inc, Cary, NCGoogle Scholar
  35. Seixas CDS, Barreto RW, Alfenas AC, Ferreira FA (2004) Cryphonectria cubensis on an indigenous host in Brazil: a possible origin for eucalyptus canker disease. Mycologist 18:39–45CrossRefGoogle Scholar
  36. Slippers B, Stenlid J, Wingfield MJ (2005) Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends Ecol Evol 20:420–421CrossRefPubMedGoogle Scholar
  37. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  38. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32CrossRefPubMedGoogle Scholar
  39. van der Merwe NA, Steenkamp ET, Rodas C, Wingfield BD, Wingfield MJ (2013) Host switching between native and non-native trees in a population of the canker pathogen Chrysoporthe cubensis from Colombia. Plant Pathol 62:642–648CrossRefGoogle Scholar
  40. Venter M, Wingfield MJ, Coutinho TA, Wingfield BD (2001) Molecular characterization of Endothia gyrosa isolates from Eucalyptus in South Africa and Australia. Plant Pathol 50:211–217CrossRefGoogle Scholar
  41. Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J (2011) New records of the Cryphonectriaceae from southern Africa including Latruncellus aurorae gen. sp nov. Mycologia 103:554–569CrossRefPubMedGoogle Scholar
  42. Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J (2013) Species delineation in the tree pathogen genus Celoporthe (Cryphonectriaceae) in southern Africa. Mycologia 105:297–311CrossRefPubMedGoogle Scholar
  43. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246CrossRefPubMedPubMedCentralGoogle Scholar
  44. White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, TJ SJJW (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., San Diego, pp 315–322Google Scholar
  45. Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836CrossRefPubMedGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences (NAS)University of PretoriaPretoriaSouth Africa
  2. 2.Department of Plant and Soil Sciences, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences (NAS)University of PretoriaPretoriaSouth Africa

Personalised recommendations