Mycological Progress

, Volume 17, Issue 8, pp 941–952 | Cite as

Molecular phylogeny, morphology and pathogenicity of Pseudopestalotiopsis species on Ixora in Taiwan

  • Ichen Tsai
  • Sajeewa S. N. MaharachchikumburaEmail author
  • Kevin D. Hyde
  • Hiran A. AriyawansaEmail author
Original Article


Pestalotiopsis-like species are phytopathogenic, causing numerous diseases on different hosts, and are widely distributed in tropical and temperate ecosystems. These taxa were recently segregated into several genera and species having brown to dark brown or olivaceous median cells, with or without knobbed apical appendages, were classified under the new genus Pseudopestalotiopsis. Pseudopestalotiopsis species are well known for their capability to produce novel medicinal compounds that may have medicinal, agricultural and industrial applications. Ixora is among the largest genera in the family Rubiaceae and is cultivated throughout Taiwan, as a garden plant. During a survey of fungal diseases associated with Ixora species in Taiwan, several Pestalotiopsis-like species causing leaf spot were isolated. Based on morphology coupled with single- and multi-gene (ITS, TUB, TEF) phylogenies, these taxa belong to two novel species of Pseudopestalotiopsis and are introduced herein as Ps. ixorae and Ps. taiwanensis. These two new taxa fit well with Pseudopestalotiopsis in having dark concolourous median cells with knobbed apical appendages, but differ from the known species in the size of conidiomata, size of the conidia, the number of apical appendages, the length of basal appendages plus ecology and distribution. Pathogenicity testing showed that Ps. ixorae and Ps. taiwanensis are capable of causing leaf disease on Ixora and to the best of our knowledge, this is the first record of Pseudopestalotiopsis species associated with leaf spots of Ixora in Taiwan.


New species New record Pestalotioid fungi Phytopathogen Taxonomy 



We are grateful to the President of National Taiwan University, the Dean of College of Bio-Resources and Agriculture and the chairmen of the Department of Plant Pathology and Microbiology for providing additional funding for this project. Hiran Ariyawansa is grateful to A.D Ariyawansa, D.M.K Ariyawansa, Ruwini Ariyawansa and Amila Gunasekara for their valuable suggestions.

Funding information

This study was funded by the Ministry of Science and Technology, Taiwan (MOST project ID 106-2621-B-002-005-MY2).

Supplementary material

11557_2018_1404_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)


  1. Akter S, Haque T, Irine EJ, Kabir MF, Ahmed S, Begum T (2015) Comparative antimicrobial activities of different species of Ixora. J Pharmacogn Phytochem 3:103–105Google Scholar
  2. Alves J, Barreto R (2010) Pseudocercospora ixoricola causing leaf spots on Ixora coccinea in Brazil. Plant Dis 94:278CrossRefGoogle Scholar
  3. Ariyawansa HA, Hawksworth DL, Hyde KD, Jones EBG, Maharachchikumbura SSN, Manamgoda DS, Thambugala KM, Udayanga D, Camporesi E, Daranagama A, Jayawardena R, Liu JK, McKenzie EHC, Phookamsak R, Senanayake IC, Shivas RG, Tian Q, Xu JC (2014) Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Divers 69:57–91CrossRefGoogle Scholar
  4. Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui YY, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li QR, Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang CH, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith GW, Ho HM, Hofstetter V, Jeewon R, Kang JC, Wen TC, Kirk PM, Kytövuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S, De Azevedo SALCM, Sommai S, Song Y, De Souza CAF, De Souza-Motta CM, Su HY, Suetrong S, Wang Y, Wei SF, Wen TC, Yuan HS, Zhou LW, Réblová M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li X, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen HA, Chen XH, Miettinen O, Spirin V, Hernawati (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:27–274CrossRefGoogle Scholar
  5. Ariyawansa HA, Hyde KD, Liu JK, Wu SP, Liu ZY (2016a) Additions to Karst Fungi 1: Botryosphaeria minutispermatia sp. nov., from Guizhou Province, China. Phytotaxa 275:35–44CrossRefGoogle Scholar
  6. Ariyawansa HA, Hyde KD, Thambugala KM, Maharachchikumbura SSN, Al-Sadi AM, Liu ZY (2016b) Additions to Karst Fungi 2: Alpestrisphaeria jonesii from Guizhou Province, China. Phytotaxa 277:255–265CrossRefGoogle Scholar
  7. Banerjee A, Islam S, Middya R (2017) Colletotrichum gloeosporioides causing leaf spot disease on Ixora coccinea in West Bengal. J Pharmacogn Phytochem 6:1730–1732Google Scholar
  8. Chang H, Chang J (1990) Pestalosphaeria hansenii, the teleomorph of an anamorph Pestalotiopsis sp. on mangrove (Kandelia candel (L.) Druce) leaves and its ascomatal formation under laboratory conditions. Bot Bull Acad Sin 31:175–177Google Scholar
  9. Chen Y, Zeng L, Shu N, Jiang M, Wang H, Huang Y, Tong H (2018) Pestalotiopsis-like species causing gray blight disease on Camellia sinensis in China. Plant Dis 102(1):98–106CrossRefGoogle Scholar
  10. Crous PW, Hawksworth DL, Wingfield MJ (2015) Identifying and naming plant-pathogenic fungi: past, present, and future. Annu Rev Phytopathol 53:247–267CrossRefPubMedGoogle Scholar
  11. Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW (2003) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57:2721–2741CrossRefPubMedGoogle Scholar
  12. Devi S, Garg P, Dwivedi A (1995) Ultrastructural studies on the post-infection changes in Ixora coccinea infected by Alternaria alternata. Arch Phytopathol Plant Protect 29:473–477CrossRefGoogle Scholar
  13. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  14. Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Ghobad-Nejhad M, Nilsson H, Pang KL, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promputtha I (2015) The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Divers 74:3–18CrossRefGoogle Scholar
  15. Kharat A, Nambiar V, Tarkasband Y, Pujari R (2013) A review on phytochemical and pharmacological activity of genus Ixora. Int J Res Pharm Chem 3:628–635Google Scholar
  16. Ko Y, Yao K, Chen C, Lin C (2007) First report of gray leaf spot of mango (Mangifera indica) caused by Pestalotiopsis mangiferae in Taiwan. Plant Dis 91:1684–1684CrossRefGoogle Scholar
  17. Lin CC, Tsai SF (2001) Survey of Pestalotiopsis disease of wax apple at Kaohsiung area in Taiwan. Plant Pathol Bull 10:123–128Google Scholar
  18. Lin HF, Chen TH, Liu SD (2011) The antifungal mechanism of Bacillus subtilis against Pestalotiopsis eugeniae and its development for commercial applications against wax apple infection. Afr J Microbiol Res 5:1723–1728Google Scholar
  19. Liu F, Hou L, Raza M, Cai L (2017) Pestalotiopsis and allied genera from Camellia, with description of 11 new species from China. Sci Rep 7(1):866CrossRefPubMedPubMedCentralGoogle Scholar
  20. Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Crous PW, Bhat DJ, McKenzie EHC, Bahkali AH, Hyde KD (2012) A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers 56:95–129CrossRefGoogle Scholar
  21. Maharachchikumbura SSN, Chukeatirote E, Guo LD, Crous PW, Mckenzie EHC, Hyde KD (2013a) Pestalotiopsis species associated with Camellia sinensis (tea). Mycotaxon 123:47–61CrossRefGoogle Scholar
  22. Maharachchikumbura SSN, Guo LD, Chukeatirote E, Hyde KD (2013b) Improving the backbone tree for the genus Pestalotiopsis; addition of P. steyaertii and P. magna sp. nov. Mycol Prog 13:617–624CrossRefGoogle Scholar
  23. Maharachchikumbura SSN, Hyde KD, Groenewald JZ, Xu J, Crous P (2014) Pestalotiopsis revisited. Stud Mycol 79:121–186CrossRefPubMedPubMedCentralGoogle Scholar
  24. Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Jayarama DB, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao Y, D’souza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bahkali AH, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang J, Li QR, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Phookamsak R, Promputtha I, Suetrong S, Stadler M, Wen T, Wijayawardene NN (2016a) Families of Sordariomycetes. Fungal Divers 79:1–317CrossRefGoogle Scholar
  25. Maharachchikumbura SSN, Guo LD, Liu ZY, Hyde KD (2016b) Pseudopestalotiopsis ignota and Ps. camelliae spp. nov. associated with grey blight disease of tea in China. Mycol Prog 15:22CrossRefGoogle Scholar
  26. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE)Google Scholar
  27. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  28. Nozawa S, Yamaguchi K, Van Hop D, Phay N, Ando K, Watanabe K (2017) Identification of two new species and a sexual morph from the genus Pseudopestalotiopsis. Mycoscience 58(5):328–337CrossRefGoogle Scholar
  29. Nylander J (2004) MrModeltest v2. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Uppsala, SwedenGoogle Scholar
  30. O'Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116CrossRefPubMedGoogle Scholar
  31. Page RD (2001) TreeView. Glasgow University, GlasgowGoogle Scholar
  32. Rambaut A, Drummond AJ (2007) Tracer v1, 4. Available from: (accessed 10 Dec 2017)
  33. Rambaut A, Drummond AJ (2008) FigTree: tree figure drawing tool, version 1.2. 2Google Scholar
  34. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311CrossRefPubMedGoogle Scholar
  35. Reddy MS, Murali T, Suryanarayanan T, Rajulu MG, Thirunavukkarasu N (2016) Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern. India Fungal Ecol 24:70–75CrossRefGoogle Scholar
  36. Rehner S (2001) Primers for elongation factor 1-α (EF1-α)∼faaberg/aftol/EF1primer.pdf
  37. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12):1572–1574Google Scholar
  38. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246CrossRefPubMedGoogle Scholar
  39. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  40. Swofford D (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sinauer associates. Sunderland, MassachusettsGoogle Scholar
  41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  42. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32CrossRefPubMedGoogle Scholar
  43. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics PCR protocols: a guide to methods and applications. 18:315–322Google Scholar
  44. Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3:4CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Pathology and Microbiology, College of Bio-Resources and AgricultureNational Taiwan UniversityTaipei CityTaiwan
  2. 2.Department of Crop Sciences, College of Agricultural and Marine SciencesSultan Qaboos UniversityMuscatOman
  3. 3.Center of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand

Personalised recommendations