Advertisement

Capillaureum caryovora gen. sp. nov. (Cryphonectriaceae) pathogenic to pequi (Caryocar brasiliense) in Brazil

  • Maria Alves FerreiraEmail author
  • Mara Elisa Soares de Oliveira
  • Gabrielle Avelar Silva
  • Sandra Marisa Mathioni
  • Reginaldo Gonçalves Mafia
Original Article
  • 50 Downloads

Abstract

Caryocar brasiliense Camb. (Ca. brasiliense) is a typical tree of the Brazilian Cerrado commonly known as pequi. The pequi fruits have a high potential for use in cosmetic and food industries. Due to its economic importance, during the fruiting period, numerous families living in the Cerrado biome benefit from direct fruit harvesting, which is often their only income source. There are no commercial plantations, and the only source of the pequi fruits is the natural Brazilian Cerrado. During a disease survey, an unknown fungus was observed on stem cankers of dying trees. The fungus has similar characteristics to the well-known family of canker pathogens, the Cryphonectriaceae. Thus, the aims of this study were to isolate and identify the fungus from those canker symptoms and assess its pathogenicity. Identification of the fungus was based on morphological characteristics as well as DNA sequence data. DNA from the internal transcribed spacer (ITS) regions, two fragments of the b-tubulin gene (BT1 and BT2), and large subunit of rDNA (LSU) was sequenced and compared with published sequences for 20 genera in the Cryphonectriaceae family. Pathogenicity tests were conducted on Ca. brasiliense seedlings. Morphological characterizations revealed that the fungus isolated from Ca. brasiliense differed from those typically found in the Cryphonectriaceae, especially for the presence of ostiolar septate single or branched hyphae. Phylogenetic analyses showed that this novel fungus from Ca. brasiliense grouped separately from other genera in the Cryphonectriaceae. Pathogenicity tests on Ca. brasiliense showed that the fungus is able to cause stem cankers. Taking all findings together, we propose that the pathogenic fungus isolated from Ca. brasiliense is a novel genus and a novel species in the Cryphonectriaceae, and thus, we named it as Capillaureum caryovora.

Keywords

Canker disease Pequi Cerrado Diaporthales 

Notes

Acknowledgements

We are thankful to professor Eduardo Alves for support with the Scanning Electron Microscopy imaging.

Funding information

This study received funding and scholarships from the Fundação de Amparo à Pesquisa no Estado de Minas Gerais (FAPEMIG), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Alfenas AC, Mafia RG (2016) Métodos em Fitopatologia. Editora UFV, Viçosa 450pGoogle Scholar
  2. Alfenas AC, Zauza EAV, Mafia RG, Assis TF (2009) Clonagem e doenças do eucalipto, 2nd edn. Universidade Federal de Viçosa, Viçosa 500p Google Scholar
  3. Almeida SP, Silva JA (1994) Pequi e buriti: Importância alimentar para a população dos Cerrados. Documentos, Planaltina, p 1994 38pGoogle Scholar
  4. Almeida SP, Proença CLB, Sano SM, Ribeiro JF (1998) Cerrado: espécies vegetais úteis. Embrapa-CPAC, Planaltina, p 1998 464pGoogle Scholar
  5. Angelo H, Pompamayer RS, Viana MC, Almeida NA, Moreira JMMAP, Souza NA (2012) Valoração econômica da depredação do Pequi (Caryocar brasiliense Camb.) no Cerrado Brasileiro. Scientia Forestales 93:35–45Google Scholar
  6. Anjos JRN, Charchar MJA, Akimoto AK (2002) Ocorrência de antracnose causada por Colletotrichum acutatum em pequizeiro no Distrito Federal. Fitopatol Bras 27Google Scholar
  7. Assis TF, Mafia RG (2007) Hibridação e clonagem. In: Borém A (ed) Biotecnologia florestal. Suprema, Viçosa, pp 93–121Google Scholar
  8. Astellani A (1939) Viability of some pathogenic fungi in distilled water. J Trop Med Hyg 24:270–276Google Scholar
  9. Barreto RW, Rocha FB, Ferreira FA (2006) First record of natural infection of Marlierea edulis by the eucalyptus canker fungus Chrysoporthe cubensis. Plant Pathol 55:577CrossRefGoogle Scholar
  10. Begoude BAD, Gryzenhout M, Wingfield MJ, Roux J (2010) Aurifilum, a new fungal genus in the Cryphonectriaceae from Terminalia species in Cameroon. Antonie Van Leeuwenhoek 98:263–278CrossRefGoogle Scholar
  11. Beier GL, Hokanson SC, Bates ST, Blanchette RA (2015) Aurantioporthe corni gen. Et comb. nov., an endophyte and pathogen of Cornus alternifolia. Mycologia 107:66–79CrossRefGoogle Scholar
  12. Boerboom JHA, Maas PWT (1970) Canker of Eucalyptus grandis and E. saligna in Surinam caused by Endothia havanensis.Turrialba 20:94–99Google Scholar
  13. Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-anun C, Crous PW (2009) Myrtaceae, a cache of fungal biodiversity. Persoonia 23:55–85CrossRefGoogle Scholar
  14. Chen SF, Wingfield MJ, Roets F, Roux J (2013a) A serious canker caused by Immersiporthe knoxdaviesiana gen. Et sp. nov. (Cryphonectriaceae) on native Rapanea melanophloeos in South Africa. Plant Pathol 62:667–678CrossRefGoogle Scholar
  15. Chen SF, Wingfield MJ, Roux J (2013b) Diversimorbus metrosiderotis gen. Et sp. nov. and three new species of Holocryphia (Cryphonectriaceae) associated with cankers on native Metrosideros angustifolia trees in South Africa. Fungal Biol 117:289–310CrossRefGoogle Scholar
  16. Chen SF, Wingfield MJ, Li GQ, Liu FF (2016) Corticimorbus sinomyrti gen. Et sp. nov. (Cryphonectriaceae) pathogenic to native Rhodomyrtus tomentosa (Myrtaceae) in South China. Plant Pathol 65:1254–1266CrossRefGoogle Scholar
  17. Chen SF, Liu QL, Li GQ , Wingfield MJ, Roux, J (2018) A new genus of Cryphonectriaceae isolated from Lagerstroemia speciosa in southern China. Plant Pathol 67:107–123Google Scholar
  18. Crane C, Burgess TI (2013) Luteocirrhus shearii gen. Sp. nov. (Diaporthales, Cryphonectriaceae) pathogenic to Proteaceae in the South Western Australian floristic region. IMA Fungus 4:111–122CrossRefGoogle Scholar
  19. Crous PW, Summerell BA, Alfenas AC, Edwards J, Pascoe IG, Porter IJ, Groenewald JZ (2012) Genera of diaporthalean coelomycetes associated with leaf spots of tree hosts. Persoonia 28:66–75CrossRefGoogle Scholar
  20. EMBRAPA- Empresa Brasileira de Pesquisa Agropecuária (2009) Pequizeiro (Caryocar brasiliense). Comunicado Técnico 230. Colombo, PR. 10ppGoogle Scholar
  21. Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  22. Ferreira FA (1989) Patologia florestal: principais doenças florestais no Brasil. UFV; SIF, Viçosa 570 ppGoogle Scholar
  23. Ferreira FA, Milani D (2004) Avaliação de resistência de clones de Eucalipto às infecções naturais de Cryphonectria cubensis, com nova metodologia. Revista Árvore 28:313–316CrossRefGoogle Scholar
  24. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330Google Scholar
  25. Gryzenhout M, Myburg H, Van der Merwe NA, Wingfield BD, Wingfield MJ (2004) Chrysoporthe, a new genus to accommodate Cryphonectria cubensis. Stud Mycol 50:119–142Google Scholar
  26. Gryzenhout M, Myburg H, Wingfield BD, Montenegro F, Wingfield MJ ( 2005) Chrysoporthe doradensis sp. nov. pathogenic to Eucalyptus in Ecuador. Fungal Divers 20:39–57Google Scholar
  27. Gryzenhout M, Rodas CA, Portales JM, Clegg P, Wingfield BD, Wingfield MJ (2006) Novel hosts of the eucalyptus canker pathogen Chrysoporthe cubensis and a new Chrysoporthe species from Colombia. Mycol Res 110:833–845CrossRefGoogle Scholar
  28. Gryzenhout M, Wingfield BD, Wingfield MJ (2009) Taxonomy, phylogeny, and ecology of bark-inhabiting and tree pathogenic fungi in the Cryphonectriaceae. APS Press, St Paul 119 ppGoogle Scholar
  29. Gryzenhout M, Tarigan M, Clegg PA, Wingfield MJ (2010) Cryptometrion aestuescens gen. Sp. nov. (Cryphonectriaceae) pathogenic to Eucalyptus in Indonesia. Australas Plant Pathol 39:161–169CrossRefGoogle Scholar
  30. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefGoogle Scholar
  31. Hepperle D (2004) SeqAssem©: a sequence analysis tool contig assembler and trace data visualization tool for molecular sequences. Win32-version. Distributed by the author via< http://www.sequentix.de>. Accessed 29 Nov 2017
  32. Hodges CS, Reis MS, Ferreira FA, Henfling JDM (1976) O cancro do eucalipto causado por Diaporthe cubensis. Fitopatalogia Brasileira 1:129–170Google Scholar
  33. Hodges CS, Geary TF, Cordell CE (1979) The occurrence of Diaporthe cubensis on Eucalyptus in Florida, Hawaii and Puerto Rico. Plant Dis Rep 63:216–220Google Scholar
  34. Huelsenbeck JP (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  35. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  36. Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759CrossRefGoogle Scholar
  37. Lorenzi H (2008) Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Instituto Plantarum, Nova Odessa 384 ppGoogle Scholar
  38. Melo AF Jr, Carvalho D, Vieira FA, Oliveira DA (2012) Spatial genetic structure in natural populations of Caryocar brasiliense Camb. (Caryocaraceae) in the north of Minas Gerais, Brazil. Biochem Syst Ecol 43:205–209CrossRefGoogle Scholar
  39. Myburg H, Gryzenhout M, Wingfield BD, Wingfield MJ (2003) Conspecificity of Endothia eugeniae and Chryphonectria cubensis: a re-evaluation based on morphology and DNA sequence data. Mycoscience 44:187–196CrossRefGoogle Scholar
  40. Nakabonge G, Burgess T, Gryzenhout M, Wingfield B, Wingfield M, Roux J (2008) Population structure of the fungal pathogen Holocryphia eucalypti in Australia and South America. Australas Plant Pathol 37:154–161CrossRefGoogle Scholar
  41. Oliveira MES (2018) Genetic variabilty of Chrysoporthe spp. no Brazil. Tese de Doutorado. Universidade Federal de Lavras, Lavras 90pp Google Scholar
  42. Piveta G, Ferreira MA, Muniz MFB, Valdetaro D, Valdebenito-Sanhueza R, Harrington TC, Alfenas AC (2016) Ceratocystis fimbriata on kiwifruit (Actinidia app.) in Brazil. N Z J Crop Hortic Sci 44:13–24CrossRefGoogle Scholar
  43. Rodas CA, Gryzenhout M, Myburg H, Wingfield BD, Wingfield MJ (2005) Discovery of the eucalyptus canker pathogen Chrysoporthe cubensis on native Miconia (Melastomataceae) in Colombia. Plant Pathol 54:460–470CrossRefGoogle Scholar
  44. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  45. Santos FS, Santos RF, Dias PP, Zanão LA Jr, Tomassoni F (2013) A cultura do Pequi (Caryocar brasiliense Camb.). Acta Iguazu 2:46–57Google Scholar
  46. Seixas CDS, Barreto RW, Alfenas AC, Ferreira FA (2004) Cryphonectria cubensis on an indigenous host in Brazil: a possible origin for Eucalyptus canker disease? Mycologist 18:39–45CrossRefGoogle Scholar
  47. Sharma JK, Mohanan C, Florence EJM (1985) Disease survey in nurseries and plantations of forest tree species grown in Kerala. Research report, Kerala Forest Research Institute, Kerala, India, 268pGoogle Scholar
  48. Silva JA, Silva DB, Junqueira NTV, Andrade LMR (1994) Frutas nativas dos cerrados. Embrapa-CPAC, BrasíliaGoogle Scholar
  49. Silva AC, Candido TS, Sales NLP, Harrington TC, Alfenas AC (2017) First report of Ceratocystis wilt caused by Ceratocystis fimbriata on Caryocar brasiliense trees in Brazil. Plant Dis 101:1822CrossRefGoogle Scholar
  50. Soares TPF, Ferreira MA, Mafia RG, Oliveira LSS, Hodges CS, Alfenas AC (2018) Canker disease caused by Chrysoporthe doradensis and C. cubensis on Eucalyptus sp. and Tibouchina spp. in Brazil. Tropical Plant Pathol 43:314–322CrossRefGoogle Scholar
  51. Swofford DL (2002) PAUP* phylogenetic analyzes using Parsimony: and other methods. Version 4.0 beta. Duke University, DukeGoogle Scholar
  52. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  54. Thompson JD, Higgins DG, Gibson TJ (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  55. Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J (2011) New records of Cryphonectriaceae from southern Africa including Latruncellus aurorae gen. Sp. nov. Mycologia 103:554–569CrossRefGoogle Scholar
  56. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innes MA, Gelfand DH, Sninsky SS, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., San Diego, pp 315–322Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidade Federal de LavrasDepartamento de FitopatologiaLavrasBrazil
  2. 2.Center of TechnologyFibria Celulose S.A. Rod, AracruzAracruzBrazil

Personalised recommendations