Mycological Progress

, Volume 16, Issue 5, pp 477–494 | Cite as

The genus Diaporthe: a rich source of diverse and bioactive metabolites

  • Clara Chepkirui
  • Marc StadlerEmail author


The genus Diaporthe (asexual state: Phomopsis) comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Although species of Diaporthe have in the past chiefly been distinguished based on host association, studies have confirmed several taxa to have wide host ranges, suggesting that they move freely between hosts, frequently co-colonizing diseased or dead tissue, while some species are known to be host-specific. They are also very frequently isolated as endophytes of seed plants. Due to their importance as plant pathogens, the genus has been thoroughly investigated for secondary metabolites, including during screening programs aimed at the discovery of novel bioactive natural products, but the respective information has never been compiled. Therefore, we have examined the relevant literature to explore and highlight the major classes of metabolites of Diaporthe and their Phomopsis conidial states. These fungi predominantly produce a large number of polyketides, but cytochalasins and other types of commonly encountered fungal secondary metabolites are also predominant in some species. Interestingly, not a single metabolite which is also known from the host plant has ever been isolated as a major component from an endophytic Diaporthe strain, despite the fact that many of the recent studies were targeting endophytic fungi of medicinal plants.


Antibiotics Ascomycota Bioprospecting Endophytic fungi Pathogenicity factors 



A personal PhD stipend by German Academic Exchange Service (DAAD) and the Kenya National Council for Science and Technology (NACOSTI) to C.C. is gratefully acknowledged. We are deeply indebted to Ms. Asha J. Dissanayake, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, for providing the images in Fig. 1.


  1. Abreu LM, Costa SS, Pfennig LH, Takahashi JA, Larsen TO, Andersen B (2012) Chemical and molecular characterization of Phomopsis and cytospora-like endophytes from different host plants in Brazil. Fungal Biol 116(2):249–260PubMedCrossRefGoogle Scholar
  2. Adelin E, Servy C, Cortial S, Lévaique H, Martin M, Retailleau P, Goff GL, Bussaban, Lumyong BS, Ouazzan J (2011) Isolation, structure elucidation and biological activity of metabolites from Sch-642305-producing endophytic fungus Phomopsis sp. CMU-LMA. Phytochemistry 72:2406–2412PubMedCrossRefGoogle Scholar
  3. Adelin E, Martin M, Cortial S, Retailleau P, Lumyong S, Ouazzani J (2013) Bioactive polyketides isolated from agar-supported fermentation of Phomopsis sp. CMU-LMA, taking advantage of the scale-up device, Platotex. Phytochemistry 93:170–175PubMedCrossRefGoogle Scholar
  4. Agusta A, Ohashi K, Shibuya H (2006) bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp. Chem Pharm Bull 54(4):579–582PubMedCrossRefGoogle Scholar
  5. Ahmed I, Hussain H, Schulz B, Draeger S, Padula D, Pescitelli G, van Ree T, Krohn K (2011) Three new antimicrobial metabolites from the endophytic fungus Phomopsis sp. Eur J Org Chem 15:2867–2873CrossRefGoogle Scholar
  6. Anupam B, Shamima A, Nikoleta B, Marjorie P (2011) Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci 16:980–996CrossRefGoogle Scholar
  7. Arai I, Shiomi K, Tomoda H, Tabata N, Yang DY, Masuma R, Kawakubo T, Omura S (1995) Mophilones III - VI, inhibitors of Acyl-CoA : cholesterol acyltransferase produced by Penicillium multicolor FO-3216. J Antibiot 48:696–702PubMedCrossRefGoogle Scholar
  8. Avantaggiato G, Solfrizzo M, Tosi L, Zazzerini A, Fanizzi FP, Visconti A (1999) Isolation and characterization of phytotoxic compounds produced by Phomopsis helianthi. Nat Toxins 7(3):119–127PubMedCrossRefGoogle Scholar
  9. Botella L, Diez JJ (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers 47:9–18CrossRefGoogle Scholar
  10. Brady SF, Singh MP, Janso JE, Clardy J (2000) Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Org Lett 2(25):4047–4049PubMedCrossRefGoogle Scholar
  11. Brenner SL, Korn ED (1980) The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. J Biol Chem 255(3):841–844PubMedGoogle Scholar
  12. Brown SG, Jansma MJ, Hoye TR (2012) Case study of empirical and computational chemical shift analyses: reassignment of the relative configuration of phomopsichalasin to that of diaporthichalasin. J Nat Prod 75(7):1326–1331PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bungihan ME, Tan MA, Kitajima M, Kogure N, Franzblau SG, dela Cruz DEE, Takayama H, Nonato GM (2011) Bioactive metabolites of Diaporthe sp. P133, an endophytic fungus isolated from Pandanus amaryllifolius. J Nat Med 65(3):606–609PubMedCrossRefGoogle Scholar
  14. Bunyapaiboonsri T, Yoiprommarat S, Srikitikulchai P, Srichomthong K, Lumyong S (2010) Oblongolides from the endophytic fungus Phomopsis sp. BCC 9789. J Nat Prod 73:55–59PubMedCrossRefGoogle Scholar
  15. Cai P, Smith D, Cunningham B, Brown-Shimer S, Katz B, Pearce C, Venables D, Houck D (2012) Epolones: novel sesquiterpene-tropolones from fungus OS-F69284 that induce erythropoietin in human cells. J Nat Prod 61:791–795CrossRefGoogle Scholar
  16. Calcul L, Waterman C, Ma WS, Lebar MD, Harter C, Mutka T, Morton L, Maignan P, Olphen A, Kyle DE, Vrijmoed L, Pang K, Pearce C, Baker B (2013) Screening mangrove endophytic fungi for antimalarial natural products. Mar Drugs 11(12):5036–5050PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen Y, Pan J, Xu F, Liu F, Yang J, Huang C, Xu C, Lu Y, Cai X, She Z, Lin (2010) A new indene derivative from the marine fungus Phomopsis sp. (No. GX7-4A). Chem Nat Compd 46:230–232CrossRefGoogle Scholar
  18. Choi JN, Kim J, Ponnusamy K, Lim C, Kim JG, Muthaiya MJ, Lee C (2013a) Identification of a new phomoxanthone antibiotic from Phomopsis longicolla and its antimicrobial correlation with other metabolites during fermentation. J Antibiot 66:231–233PubMedCrossRefGoogle Scholar
  19. Choi JN, Kim J, Ponnusamy K, Lim C, Kim JG, Muthaiya MJ, Lee C (2013b) Metabolic changes of Phomopsis longicolla fermentation and its effect on antimicrobial activity against Xanthomonas oryzae. J Microbiol Biotechnol 23(2):177–183PubMedCrossRefGoogle Scholar
  20. Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P (2005) Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomopsis asparagi. J Nat Prod 68:1592–1597PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cimmino A, Andolfi A, Zonno AC, Troise C, Santini A, Tuzi A, Vurro M, Ash G, Evidente A (2012) Phomentrioloxin: a phytotoxic pentasubstituted geranylcyclohexentriol produced by Phomopsis sp., a potential mycoherbicide for Carthamus lanatus biocontrol. J Nat Prod 75:1130–1137PubMedCrossRefGoogle Scholar
  22. Claydon N, Grove JF, Pople M (1985) Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry 24:937–943CrossRefGoogle Scholar
  23. Convert O, Jellal A, Correia I, Dardoize F, Mernguy L, Cherton JC (1994) A novel mycotoxin: the chaetoglobosin N from infested maize by Phomopsis leptostromiformis. II: Structure elucidation by 1H and 13C NMR. Analysis 22:217–221Google Scholar
  24. Dai D, Carté BK, Sidebottom PJ, Yew ALS, Siew-Bee N, Huang Y, Butler MS (2001) Circumdatin G, a new alkaloid from the fungus Aspergillus ochraceus. J Nat Prod 64:125–126PubMedCrossRefGoogle Scholar
  25. Dai J, Krohn K, Flörke U, Gehle D, Aust H, Draeger S, Schulz B, Rheinheimer J (2005a) Novel highly substituted biraryl ethers, phomosines D–G, isolated from the endophytic fungus Phomopsis sp. from Adenocarpus foliolosus. Eur J Org Chem 23:5100–5105CrossRefGoogle Scholar
  26. Dai J, Krohn K, Gehle D, Kock I, Flörke U, Aust H, Draeger S, Schulz B, Rheinheimer J (2005b) New oblongolides isolated from the endophytic fungus Phomopsis sp. from Melilotus dentata from the shores of the Baltic Sea. Eur J Org Chem 18:4009–4016CrossRefGoogle Scholar
  27. Dayarathne MC, Boonmee S, Braun U, Crous PW, Daranagama DA, Dissanayake AJ, Ekanayaka H, Jayawardena R, Jones EBG, Maharachchikumbura SSN, Perera RH, Phillips AJL, Stadler M, Thambugala KM, Wanasinghe DN, Zhao Q, Hyde KD, Jeewon R (2016) Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications. Mycosphere 7(11):1622–1648Google Scholar
  28. Dettrakul S, Kittakoop P, Isaka M, Nopichai S, Suyarnsestakorn C, Tanticharoen, Thebtaranontha MY (2003) Antimycobacterial pimarane diterpenes from the fungus Diaporthe sp. Bioorg Med Chem Lett 13:1253–1255PubMedCrossRefGoogle Scholar
  29. Ding B, Yuan J, Huang X, Wen W, Zhu X, Liu Y, Li H, Lu Y, He L, Tan H, She Z (2013) New dimeric members of the phomoxanthone family: phomolactonexanthones A, B and deacetylphomoxanthone C isolated from the fungus Phomopsis sp. Mar Drugs 11:4961–4972PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dissanayake AJ, Liu M, Zhang W, Chen Z, Udayanga D, Chukeatirote E, Li X, Yan J, Hyde KD (2015) Morphological and molecular characterisation of Diaporthe species associated with grapevine trunk disease in China. Fungal Biol 119:283–294PubMedCrossRefGoogle Scholar
  31. Du X, Lu C, Li Y, Zheng Z, Su W, Shen Y (2008) Three new antimicrobial metabolites of Phomopsis sp. J Antibiot 61(4):250–253PubMedCrossRefGoogle Scholar
  32. Erincik O, Madden LV (2001) Effect of growth stage on susceptibility of grape berry and rachis tissues to infection by Phomopsis viticola. Plant Dis 85:517–520CrossRefGoogle Scholar
  33. Evidente A, Rodeva R, Andolfi A, Stoyanova Z, Perrone C, Motta A (2011) Phytotoxic polyketides produced by Phomopsis foeniculi, a strain isolated from diseased Bulgarian fennel. Eur J Plant Pathol 130:173–182CrossRefGoogle Scholar
  34. Frisvad JC (2015) Fungal chemotaxonomy. In: Zeilinger S, Martín J-F, García-Estrada C (eds) Biosynthesis and molecular genetics of fungal secondary metabolites, vol 2, Springer, New York, pp 103–121Google Scholar
  35. Gao JM, Yang SX, Qin JC (2013) Azaphilones: chemistry and biology. Chem Rev 113:4755–4811PubMedCrossRefGoogle Scholar
  36. Garcia-Reyne A, López-Medrano F, Morales JM, Esteban CG, Martín I, Eraña I, Meije Y, Lalueza A, Alastruey-Izquierdo A, Rodríguez-Tudela JL, Aguado JM (2011) Cutaneous infection by Phomopsis longicolla in a renal transplant recipient from Guinea: first report of human infection by this fungus. Transpl Infect Dis 13:204–207PubMedCrossRefGoogle Scholar
  37. Goddard M, Mottier N, Jeanneret-Gris J, Christen D, Tabacchi R, Abou-Mansour E (2014) Differential production of phytotoxins from Phomopsis sp. from grapevine plants showing esca symptoms. J Agric Food Chem 62:8602–8607PubMedCrossRefGoogle Scholar
  38. Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald J, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–41PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hemtasin C, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K, Prabpai S, Kongsaeree P (2011) cytotoxic pentacyclic and tetracyclic aromatic sesquiterpenes from Phomopsis archeri. J Nat Prod 74:609–613PubMedCrossRefGoogle Scholar
  40. Hirose T, Izawa Y, Koyoma K, Natori S, Iid K, Yahara I, Shimaoka S, Maruyama K (1990) The Effects of New Cytochalasins from Phomopsis sp. and the derivatives on cellular structure and actin polymerization. Chem Pharm Bull 38:971–974PubMedCrossRefGoogle Scholar
  41. Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51:3969–3978CrossRefGoogle Scholar
  42. Hsiao C, Hsiao S, Chen W, Guh J, Hsiao G, Chan Y, Lee T, Chung C (2012) Pycnidione, a fungus-derived agent, induces cell cycle arrest and apoptosis in A549 human lung cancer cells. Chem Biol Interact 197:23–30PubMedCrossRefGoogle Scholar
  43. Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69(7):1604–1608PubMedCrossRefGoogle Scholar
  44. Huang Z, Guo Z, Yang R, Yin X, Li X, Luo W, She Z, Lin Y (2009) Chemistry and cytotoxic activities of polyketides produced by the mangrove endophytic fungus Phomopsis SP. ZSU-H76. Chem Nat Compd 45:625–628CrossRefGoogle Scholar
  45. Huang H, Yang R, Yin X, She Z, Lin Y (2010a) Structure elucidation and NMR assignments for two xanthones derivatives from a mangrove endophytic fungus Phomopsis sp. (No. ZH19. Magn Reson Chem 48:80–82PubMedGoogle Scholar
  46. Huang Z, Yang GZ, She Z, Lin Y (2010b) A new naphtho-γ-pyrone from mangrove endophytic fungus ZSU-H26. Chem Nat Compd 46:15–18CrossRefGoogle Scholar
  47. Hussain H, Akhtar N, Draeger S, Schulz B, Pescitelli G, Salvadori P, Antus S, Kurtán T (2009) New bioactive 2,3-epoxycyclohexenes and isocoumarins from the endophytic fungus Phomopsis sp. from Laurus azorica. Eur J Org Chem 5:749–756CrossRefGoogle Scholar
  48. Hussain H, Ahmed I, Schulz B, Draeger S, Krohn K (2010) Pyrenocines J–M: Four new pyrenocines from the endophytic fungus, Phomopsis sp. Fitoterapia 83:523–526CrossRefGoogle Scholar
  49. Hussain H, Tchimene MK, Ahmed I, Meier K, Steinert M, Draeger S, Schulz B, Krohn K (2011) Antimicrobial chemical constituents from the endophytic fungus Phomopsis sp. from Notobasis syriaca. Nat Prod Commun 6:1905–1906PubMedGoogle Scholar
  50. Hussain H, Krohn K, Ahmed I, Draeger S, Schulz B, Pietro SD, Pescitelli G (2012) Phomopsinones A–D: four new pyrenocines from endophytic fungus Phomopsis sp. Eur J Org Chem 9:1783–1789CrossRefGoogle Scholar
  51. Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018PubMedCrossRefGoogle Scholar
  52. Ito A, Maeda H, Tonouchi A, Hashimoto M (2015) Relative and absolute structure of phomolide C. Biosci Biotechn Biochem 79:1067–1069CrossRefGoogle Scholar
  53. Izawa Y, Hirose T, Shimizu , Koyama K, Natori S (1989) Six new 10-pheynl-[11]cytochalasans, cytochalasins N - S from Phomopsis sp. Tetrahedron 452323–2335Google Scholar
  54. Jansen N, Ohlendorf B, Erhard A, Bruhn T, Bringmann G, Imhoff JF (2013) Helicusin E, isochromophilone X and isochromophilone XI: new chloroazaphilones produced by the fungus Bartalinia robillardoides Strain LF550. Mar Drugs 11:800–816PubMedPubMedCentralCrossRefGoogle Scholar
  55. Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2014) An antibacterial cytochalasin derivative from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem Lett 10:5–9CrossRefGoogle Scholar
  56. Klaiklay S, Rukachaisirikul V, Phongpaichit S, Pakawatchai C, Saithong S, Buatong J, Preedanon S, Sakayaroj J (2012) Anthraquinone derivatives from the mangrove-derived fungus Phomopsis sp. PSU-MA214. Phytochem Lett 5:738–742CrossRefGoogle Scholar
  57. Kobayashia H, Megurob S, Yoshimotob T, Namikoshib M (2003) Absolute structure, biosynthesis, and anti-microtubule activity of phomopsidin, isolated from a marine-derived fungus Phomopsis sp. Tetrahedron 59:455–459CrossRefGoogle Scholar
  58. Krohn K, Michel A, Roemer E, Flörke U, Aust HJ, Draeger S, Schulz B, Wray V (1995) Biologically active metabolites from fungi 61; Phomosines A-C three new biaryl ethers from Phomopsis sp. Nat Prod Lett 6:309–314CrossRefGoogle Scholar
  59. Krohn K, Farooq U, Hussain H, Ahmed I, Rheinheimer J, Draeger S, Schulz B, van Ree T (2011) Phomosines H-J, novel highly substituted biaryl ethers, isolated from the endophytic fungus Phomopsis sp. from Ligustrum vulgare. Nat Pro Commun 6(12):1907–1912Google Scholar
  60. Kuhnert E, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Rohde M, Stadler M (2016) Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers, in press (DOI:  10.1007/s13225-016-0377-6)
  61. Li Y, Wang M, Huang J, Shen M (2010) TMYC secondary metabolites from Phomopsis sp. A123. Mycology 1:254–261CrossRefGoogle Scholar
  62. Li C, Wang J, Luo C, Ding W, Cox DG (2014) A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Nat Prod Res 28:616–621PubMedCrossRefGoogle Scholar
  63. Lim C, Kim J, Choi JN, Ponnusamy K, Jeon Y, Kim SU, Kim JG, Lee C (2010) Identification, fermentation, and bioactivity against Xanthomonas oryzae of antimicrobial metabolites isolated from Phomopsis longicolla S1B4. J Microbiol Biotechnol 20:494–500PubMedGoogle Scholar
  64. Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251(1):53–58PubMedCrossRefGoogle Scholar
  65. Lin X, Lu C, Shen Y (2008) One new ten-membered lactone from Phomopsis sp. B27, an endophytic fungus of Annona squamosa. Chin J Nat Med 6:391–394CrossRefGoogle Scholar
  66. Lin T, Lin X, Lu C, Hu Z, Huang W, Huang Y, Shen Y (2009) Secondary metabolites of Phomopsis sp. XZ-26, an endophytic fungus from Camptotheca acuminate. Eur J Org Chem 18:2975–2982CrossRefGoogle Scholar
  67. Liu Y, Hu Z, Lin X, Lu C, Shen Y (2013) A new polyketide from Diaporthe sp. SXZ-19, an endophytic fungal strain of Camptotheca acuminata. Nat Prod Res 27:2100–2104PubMedCrossRefGoogle Scholar
  68. Masango MG, Ellis CE, Botha CJ (2014) Cytotoxicity of diplodiatoxin, dipmatol and diplonine, metabolites synthesized by Stenocarpella maydis. Toxicon 82:26–29PubMedCrossRefGoogle Scholar
  69. Masango MG, Ellis CE, Botha CJ (2015) Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis. Toxicon 102:14–24PubMedCrossRefGoogle Scholar
  70. Meza A, Santos EA, Gomes RS, de Lima DP, Beatriz A (2015) Cytosporones and related compounds, a review: isolation, biosynthesis, synthesis and biological activity of promising fungal resorcinolic lipids. Curr Org Synth 12(5):618–638CrossRefGoogle Scholar
  71. Mostert L, Crous PW, Kang JC, Phillips AJL (2001) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93:146–167CrossRefGoogle Scholar
  72. Murali TS, Suryanarayanan TS, Geeta R (2006) Endophytic Phomopsis species: host range and implications for diversity estimates. Can J Microbiol 52:673–680PubMedCrossRefGoogle Scholar
  73. Nair MSR, Carey ST (1975) Metabolites of pyrenomycetes II: nectriapyrone, an antibiotic monoterpenoid. Tetrahedron Lett 16:1655–1658Google Scholar
  74. Namikoshi M, Kobayashi H, Yoshimoto T, Hosoya T (1997) Phomopsidin, a new inhibitor of microtubule assembly produced by Phomopsis sp. isolated from coral reef in Pohnpei. J Antibiot 50:890–892PubMedCrossRefGoogle Scholar
  75. Ola ARB, Debbab A, Kurtán T, Brötz-Oesterhelt H, Amal H (2014) Dihydroanthracenone metabolites from the endophytic fungus Diaporthe melonis isolated from Annona squamosa L. Tetrahedron Lett 55:3147–3150CrossRefGoogle Scholar
  76. Pornpakakul S, Roengsumran S, Deechangvipart S, Petsom A, Muangsin N, Ngamrojnavanich N, Sriubolmas N, Chaichit N, Ohta T (2007) Diaporthichalasin, a novel CYP3A4 inhibitor from an endophytic Diaporthe sp. Tetrahedron Lett 48:651–655CrossRefGoogle Scholar
  77. Prachya S, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol S, Ruchirawat C, Kittakoop P (2007) Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus. Planta Med 73(13):1418–1420PubMedCrossRefGoogle Scholar
  78. Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod doi: 10.1021/acs.jnatprod.6b01085
  79. Rönsberg D, Debbab A, Mandi A, Vasylyeva V, Böhler P, Stork B, Engelke L, Hamacher A, Sawadogo R, Diederich M, Wray V, Lin W, Kassack MU, Janiak C, Scheu S, Wesselborg S, Kurtan T, Aly AH, Proksch P (2013) Pro-apoptotic and immunostimulatory tetrahydroxanthone dimers from the endophytic fungus Phomopsis longicolla. J Org Chem 78(24):12409–12425PubMedCrossRefGoogle Scholar
  80. Rossman AY, Adams GC, Cannon PF, Castlebury LA, Crous PW, Gryzenhout M, Jaklitsch WM, Mejia LC, Stoykov D, Udayanga D, Voglmayr H (2015) Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus 6:145–154PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rukachaisirikul V, Sommart U, Phongpaichit L, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69(3):783–787PubMedCrossRefGoogle Scholar
  82. Santos JM, Vrandečić K, Ćosić J, Duvnjak T, Phillips AJL (2011) Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia 27:9–19PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sommart U, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Towatana NH, Graidist P, Hajiwangoh Z, Sakayaroj J (2009) A cyclohexenone derivative from diaporthaceous fungus PSU-H2. Arch Pharmacol Res 32(9):1227–1231CrossRefGoogle Scholar
  84. Stadler M (2011) Importance of secondary metabolites in the Xylariaceae as parameters for assessment of their taxonomy, phylogeny, and functional biodiversity. Curr Res Envion Appl Mycol 1:75–133CrossRefGoogle Scholar
  85. Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B, Tichy HV, Peršoh D (2014) A polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol 77:1–143PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sutton DA, Timm WD, Morgan-Jones G, Rinaldi MG (1999) Human phaeohyphomycotic osteomyelitis caused by the coelomycete Phomopsis Saccardo 1905: criteria for identification, case history, and therapy. J Clin Microbiol 37:807–811PubMedPubMedCentralGoogle Scholar
  87. Talontsi FM, Islam T, Facey P, Douanla-Meli C, Tiedemann A, Laatsch H (2012) Depsidones and other constituents from Phomopsis sp. CAFT69 and its host plant Endodesmia calophylloides with potent inhibitory effect on motility of zoospores of grapevine pathogen Plasmopara viticola. Phytochem Lett 5:657–664CrossRefGoogle Scholar
  88. Tao Y, Mou M, Zeng X, Xu F, Cai JJ, She Z, Zhou S, Lin Y (2008) 1H and 13C NMR assignments of two new diaryl ethers phomopsides A and B from the mangrove endophytic fungus (ZZF08). Magn Reson Chem 46:761–764PubMedCrossRefGoogle Scholar
  89. Thines E, Anke H (1998) Scytalols A, B, C, and D and other modulators of melanin biosynthesis from Scytalidium sp. 36-93. J Antibiot 51:387–393PubMedCrossRefGoogle Scholar
  90. Thompson SM, Tan YP, Young AJ, Neate SM, Aitken EA, Shivas RG (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 27:80–89PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tomoda H, Namatame I, Si S, Kawaguchi K, Masuma R, Namikoshi M, Omura S (1999) Phenochalasins, inhibitors of lipid droplet formation in mouse macrophages, produced by Phomopsis sp. FT-0211. J Antibiot 52:857–861PubMedCrossRefGoogle Scholar
  92. Tsantrizos YS, Ogilvie KK (1992) Phytotoxic metabolites of Phomopsis convolvulus, a host-specific pathogen of field bindweed. Can J Chem 70:2276–2284CrossRefGoogle Scholar
  93. Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, Hyde KD (2011) The genus Phomopsis: biology, applications, species concepts and names of common pathogens. Fungal Divers 50:189–225CrossRefGoogle Scholar
  94. Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014) Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Divers 67:203–229CrossRefGoogle Scholar
  95. van Rensburg JCJ, Lamprecht SC, Groenewald JZ, Castlebury LA, Crous PW (2006) Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Stud Mycol 55:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  96. Van Warmelo KT, Marasas WFO (1972) Phomopsis leptostromiformis: the causal fungus of lupinosis, a mycotoxicosis, in sheep. Mycologia 64:316–324PubMedCrossRefGoogle Scholar
  97. Venekar SA, Mishra BD, Sreekumar ES, Deshmukh SK, Fiebig H, Kelter G, Maier A (2014) Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J Antibiot 67:697–701CrossRefGoogle Scholar
  98. Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009PubMedCrossRefGoogle Scholar
  99. Wang W, Zhao B, Zhang W, Wua X, Wang R, Huang Y, Chen D, Park K, Weimer BC, Shen Y (2010) Mycoepoxydiene, a fungal polyketide, induces cell cycle arrest at the g2/m phase and apoptosis in HeLa cells. Bioorg Med Chem Lett 20(23):7054–7058PubMedCrossRefGoogle Scholar
  100. Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina cristangalli. J Antibiot 57:559–563PubMedCrossRefGoogle Scholar
  101. Weber D, Gorzalczany S, Martino V, Acevedo C, Sterner O, Anke T (2005) Metabolites from endophytes of the medicinal plant Erythrina crista-galli. Z Naturforsch C 60:467–477PubMedCrossRefGoogle Scholar
  102. Wheeler MM, Wheeler DMS, Peterson GW (1995) Anthraquinone pigments from the phytopathogen Phomopsis juniperovora Hahn. Phytochemistry 14:288–289CrossRefGoogle Scholar
  103. Wu Q, Guo Y, Guo ZK, Chu YL, Wang T, Tan RX (2013) Two new cytosporones from the culture of endophytic Phomopsis sp. Chem Nat Compd 48:938–941CrossRefGoogle Scholar
  104. Wu HC, Ge HM, Zang LY, Bei YC, Niu ZY, Wei WA, Feng XJ, Ding S, Weng S, Shen PP, Tan RX (2014) Diaporine, a novel endophyte-derived regulator of macrophage differentiation. Org Biomol Chem 12:6545–6548PubMedCrossRefGoogle Scholar
  105. Yang J, Xu F, Huang C, Li J, She Z, Pei Z, Lin Y (2010) Metabolites from the mangrove endophytic fungus Phomopsis sp. (#zsu-H76). Eur J Org Chem 19:3692–3695CrossRefGoogle Scholar
  106. Yang JX, Chen Y, Huang C, She Z, Lin Y (2011) A new isocroman derivative from the marine fungus Phomopsis sp. ZH-111. Chem Nat Compd 47:13–16CrossRefGoogle Scholar
  107. Yang H, Gao Y, Niu D, Yang L, Gao X, Du G, Hu Q (2013a) Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp. Fitoterapia 91:189–193PubMedCrossRefGoogle Scholar
  108. Yang JX, Qiu SX, She Z, Lin Y (2013b) A new xanthone derivative from the marine fungus Phomopsis sp. No. SK7RN3G1. Chem Nat Compd 49:246–248CrossRefGoogle Scholar
  109. Yang Z, Ding J, Ding K, Chen D, Cen S, Ge M (2013c) Phomonaphthalenone A: A novel dihydronaphthalenone with anti-HIV activity from Phomopsis sp. HCCB04730. Phytochem Lett 6:257–260CrossRefGoogle Scholar
  110. Yang JX, Qiu SX, She Z, Lin Y (2014) A new isochroman derivative from the marine fungus Phomopsis sp. (No. Gx-4). Chem Nat Compd 50:424–426CrossRefGoogle Scholar
  111. Yin L, Hlsayoshi K, Yoshiyuki T, Yuichi H, Shigeo I (1992) Binding selectivity of rhizoxin, phomopsin A, vinblastine, and ansamitocin P-3 to fungal tubulins: Differential interactions of these antimitotic agents with brain and fungal tubulins. Biochem Biophys Res Commun 187:722–729CrossRefGoogle Scholar
  112. Yuan L, Lin X, Zhao P, Ma J, Huang Y, Shen Y (2009) new polyketides from endophytic Diaporthe sp. XZ-07. Helv Chim Acta 92:1184–1190CrossRefGoogle Scholar
  113. Yuan L, Huang W, Du G, Gao X, Yang H, Hu Q, Ma Y (2015) Isolation of xanthones from fermentation products o endophytic fungus Phomopsis amygdali. Chem Nat Compd 51:460–463CrossRefGoogle Scholar
  114. Zang L, Wie W, Wang T, Guo Y, Tan R, Ge H (2012a) Isochromophilones from an endophytic fungus Diaporthe sp. Nat Prod Bioprospect 2:117–120PubMedCentralCrossRefGoogle Scholar
  115. Zang Y, Wie W, Guo Y, Wang T, Jiao RU, Wenig S, Tan RX, Ge HM (2012b) Sesquiterpenoids from the mangrove-derived endophytic fungus Diaporthe sp. J Nat Prod 75:1744–1749CrossRefGoogle Scholar
  116. Zhan F, Li X, Wu L, Yang T, Han Y, Li G (2013) Cytochalasins from endophytic fungus from Phomopsis sp. cib-109. Chem Nat Compd 49:696–698CrossRefGoogle Scholar
  117. Zhang C, Ondeyka JG, Herath KB, Guan Z, Collado J, Platas G, Pelaez F, Leavitt PS, Gurnett A, Nare B, Liberator P, Singh SB (2005) Tenellones A and B from a Diaporthe sp.: two highly substituted benzophenone inhibitors of parasite cGMP-dependent protein kinase activity. J Nat Prod 68:611–613PubMedCrossRefGoogle Scholar
  118. Zhang W, Xu L, Yang L, Huang Y, Li S, Shen Y (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146–151PubMedCrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department Microbial DrugsHelmholtz Centre for Infection Research GmbH (HZI)BraunschweigGermany
  2. 2.Partner Site Hannover-BraunschweigGerman Centre for Infection Reseach Association (DZIF)BraunschweigGermany

Personalised recommendations