Mycological Progress

, Volume 15, Issue 12, pp 1293–1301 | Cite as

New aspects of the biology of Mortierella alliacea

Original Article
  • 193 Downloads

Abstract

A fungal genotype related to Mortierella alliacea was detected by environmental PCR in samples of the mite species Leptogamasus obesus and Oppiella subpectinata, as well as in the soil body. The association may be epi- or endozoic. A genotypically corresponding strain was newly isolated from mites and examined to gain deeper insight into the biology of the scarcely known fungal species. Morphological and physiological traits, as well as molecular data confirmed an affiliation to Mortierella alliacea Linnemann. However, the strain showed minor morphological differences to the original description of M. alliacea (selected here as lectotype) and to the isolate CBS 894.68 (selected here as epitype) with regard to sporocystospore and chlamydospore morphology. Therefore, an emended species description is provided. The psychrotolerant fungus is able to grow at temperatures between 0 and 25 °C. Chitin degradation was not observed, and it lacked the capability to degrade starch, cellulose, lignin, and lipids. Proteolytic activity was only exhibited at 4 °C. Co-incubated mites were not affected by the fungus, indicating that the mites predominantly serve as vectors. The fungus’ limited degradation capabilities suggest that it predominantly lives on readily accessible carbohydrates in soil.

Keywords

Fungi Mites ITS rRNA gene Lectotypification Leptogamasus obesus Oppiella subpectinata 

Notes

Acknowledgments

We thank Franz Horak (Karlsruhe) and Axel Christian (Görlitz) for the identification of mite species. Christina Leistner (Bayreuth) assisted with the laboratory work. The study was supported by the Universität Bayern e. V. (BayEFG, grant no. A4515 – I/3).

References

  1. Berlese A (1905) Apparecchio per raccogliere presto ed in gran numero piccolo artropodi. Redia 2:85–89Google Scholar
  2. Błaszkowska J, Wojcik A, Kurnatowski P, Szwabe K (2013) Biological interactions between soil saprotrophic fungi and Ascaris suum eggs. Vet Parasitol 196:401–408CrossRefPubMedGoogle Scholar
  3. Bradner JR, Gilings M, Nevalainen KMH (1999) Qualitative assessment of hydrolytic activities in microfungi grown at different temperatures on solid media. World J Microbiol Biotechnol 15:131–132CrossRefGoogle Scholar
  4. Carreiro MM, Koske RE (1992) Room temperature isolations can bias against selection of low temperature microfungi in temperate forest soils. Mycologia 84:886–900CrossRefGoogle Scholar
  5. Curl EA, Truelove B (1986) The rhizosphere. Springer Verlag, New YorkCrossRefGoogle Scholar
  6. Davies JL, Ngeleka M, Wobeser GA (2010) Systemic infection with Mortierella wolfii following abortion in a cow. Can Vet J 51:1391–1393PubMedPubMedCentralGoogle Scholar
  7. Degawa Y, Gams W (2004) A new species of Mortierella, and an associated sporangiiferous mycoparasite in a new genus, Nothadelphia. Stud Mycol 50:567–572Google Scholar
  8. Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2nd edn. IHW VerlagGoogle Scholar
  9. Fields PG (1992) The control of stored-product insects and mites with extreme temperatures. J Stored Prod Res 28:89–118CrossRefGoogle Scholar
  10. Fletcher H (1977) Parallel evolution in insect-dispersed fungi and insectivorous plants? Bull Br Mycol Soc 11:50–51CrossRefGoogle Scholar
  11. Gams W (1963) Mortierella angusta (Linnemann) n. comb. und die Entstehung von Stylosporen in der Gattung Mortierella. Ber Naturwiss-Med Ver Innsbruck 35:71–76Google Scholar
  12. Gams W (1969) Gliederungsprinzipien in der Gattung Mortierella. Nova Hedwigia 18:30–43Google Scholar
  13. Gams W (1976) Some new or noteworthy species of Mortierella. Persoonia 9:381–391Google Scholar
  14. Gams W (1977) A key to the species of Mortierella. Persoonia 9:381–391Google Scholar
  15. Gams W, Hooghiemstra H (1976) Mortierella turficola Ling Yong. Persoonia 9:141–144Google Scholar
  16. Hoffmann K, Telle S, Walther G, Eckart M, Kirchmair M, Prillinger HJ, Prazenica A, Newcombe G, Dölz F, Papp T, Vágvölgyi C, de Hoog S, Olsson L, Voigt K (2011) Diversity, genotypic identification, ultrastructural and phylogenetic characterization of zygomycetes from different ecological habitats and climatic regions: limitations and utility of nuclear ribosomal DNA barcode markers. In: Gherbawy Y (ed) Current advances in molecular mycology. Nova Science Publishers Inc., USA, pp 263–312Google Scholar
  17. Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266CrossRefPubMedGoogle Scholar
  18. Jackson RM (1965) Studies of fungi in pasture soils. N Z J Agric Res 8:878–888CrossRefGoogle Scholar
  19. Jiang W, Yang G, Zhang C, Fu C (2011) Species composition and molecular analysis of symbiotic fungi in roots of Changnienia amoena (Orchidaceae). Afr J Microbiol Res 5:222–228Google Scholar
  20. Karg W (1993) Acari (Acarina), Milben – Parasitiformes (Anactinochaeta) – Cohors Gamasina Leach – Raubmilben. Die Tierwelt Deutschlands 59. Gustav Fischer Verlag, JenaGoogle Scholar
  21. Kreyling J, Peršoh D, Werner S, Benzenberg M, Wöllecke J (2012) Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of Holcus lanatus and Calluna vulgaris. Plant Soil 353:19–31CrossRefGoogle Scholar
  22. Kurek E, Kornillowicz-Kowalska T, Sloma A, Melke J (2007) Characteristics of soil filamentous fungi communities isolated from various micro-relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Pol Polar Res 28:57–73Google Scholar
  23. Linnemann G (1953) Einige neue erdbewohnende Mortierella-Arten. Zentralbl Bakteriolog P II Abteilung 107:225–230Google Scholar
  24. Maraun M, Visser S, Scheu S (1998) Oribatid mites enhance the recovery of the microbial community after a strong disturbance. Appl Soil Ecol 9:175–181CrossRefGoogle Scholar
  25. Margesin R, Schinner F, Marx JC, Gerday C (2008) Psychrophiles, from biodiversity to biotechnology. Springer Verlag, BerlinCrossRefGoogle Scholar
  26. McNeill J, Barrie R, Buck WR, Demoulin W, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersema JH, Turland NJ (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011Google Scholar
  27. Munday J, Laven RA, Orbell GMB, Pandey SK (2006) Meningoencephalitis in an adult cow due to Mortierella wolfii. J Vet Diagn Investig 18:619–622CrossRefGoogle Scholar
  28. Nagy LG, Petkovits T, Kovács GM, Voigt K, Vágvölgyi C, Papp T (2011) Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytol 191:789–794CrossRefPubMedGoogle Scholar
  29. Ochora J, Stock WD, Linder HP, Newton LE (2001) Symbiotic seed germination in twelve Kenyan orchid species. Syst Geogr Plants 71:585–596CrossRefGoogle Scholar
  30. Peršoh D (2013) Factors shaping community structure of endophytic fungi – evidence from the Pinus-Viscum-system. Fungal Divers 60:55–69CrossRefGoogle Scholar
  31. Peršoh D, Theuerl S, Buscot F, Rambold G (2008) Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J Microbiol Methods 75:19–24CrossRefPubMedGoogle Scholar
  32. Peterson RA, Bradner JR, Robert TH, Nevalainen KMH (2009) Fungi from koala (Phascolartos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates. Lett Appl Microbiol 48:218–225CrossRefPubMedGoogle Scholar
  33. Petkovits T, Nagy LG, Hoffmann K, Wagner L, Nyilasi I, Griebel T, Schnabelrauch D, Vogel K, Voigt K, Vágvölgyi C, Papp T (2011) Data partitions, bayesian analysis and phylogeny of the zygomycetous fungal family Mortierellaceae, inferred from nuclear ribosomal DNA sequences. PLoS One 6(11), e27507CrossRefPubMedPubMedCentralGoogle Scholar
  34. Quickenden KL (1970) Carbohydrates in eggs of the grasshopper Aulocara elliotti, during development. J Insect Physiol 16:171–183CrossRefGoogle Scholar
  35. Rasband WS (1997–2008) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA (http://rsb.info.nih.gov/ij/)
  36. Ratnasingham S, Hebert PDN (2007) BOLD: the Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7:355–364
  37. Regier JC, Kafatos FC (1985) Molecular aspects of chorion formation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 1. Pergamon, Oxford, pp 113–151Google Scholar
  38. Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687CrossRefPubMedGoogle Scholar
  39. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  41. Terashita T, Sakai T, Yoshikawa K, Shishiyama J (1993) Hydrolytic enzymes produced by the genus Mortierella. Trans Mycol Soc Jpn 34:487–494Google Scholar
  42. Wada S, Ode H, Hobo S, Niwa H, Katayama Y, Takatori K (2011) Mortierella wolfii keratomycosis in a horse. Vet Ophthalmol 14:267–270CrossRefPubMedGoogle Scholar
  43. Wagner L, Stielow B, Hoffmann K, Petkovits T, Papp T, Vágvölgyi C, de Hoog GS, Verkley G, Voigt K (2013) A comprehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Persoonia 30:77–93CrossRefPubMedPubMedCentralGoogle Scholar
  44. Werner S, Peršoh D, Rambold G (2012) Basidiobolus haptosporus is frequently associated with the gamasid mite Leptogamasus obesus. Fungal Biol 116:90–97CrossRefPubMedGoogle Scholar
  45. Willoughby LG (1988) Saprolegnia parasitized by Mortierella alpina. Trans Br Mycol Soc 90:496–498CrossRefGoogle Scholar
  46. Yong L (1930) Mortierella turficola. Rev Gén Bot 42:743Google Scholar
  47. Zycha H, Siepmann R, Linnemann G (1969) Mucorales, eine Beschreibung aller Gattungen und Arten dieser Pilzgruppe. J Cramer VerlagGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sebastian Werner
    • 1
  • Derek Peršoh
    • 1
  • Gerhard Rambold
    • 1
  1. 1.University of Bayreuth – Department MycologyBayreuthGermany

Personalised recommendations