Advertisement

Mycological Progress

, 15:39 | Cite as

Combined phylogenetic and morphological studies of true morels (Pezizales, Ascomycota) in Cyprus reveal significant diversity, including Morchella arbutiphila and M. disparilis spp. nov.

  • Michael LoizidesEmail author
  • Jean-Michel Bellanger
  • Philippe Clowez
  • Franck Richard
  • Pierre-Arthur Moreau
Original Article

Abstract

A detailed account of the genus Morchella in the island of Cyprus is presented, based on integrative phylogenetic, morphoanatomical, ecological, and chorological analyses. Eleven species are molecularly confirmed, nine of them previously unreported from the island. Notably, four species are recognized as new to science, including one species in Sect. Morchella and three in Sect. Distantes. Two of these are here newly described, as Morchella arbutiphila and Morchella disparilis, respectively, whilst the other two are provisionally assigned the phylogenetic codes Mes-28 and Mel-38. Following careful re-examination of the Morchella vulgaris clade, two closely related sister species are revealed, and the taxon Morchella dunensis is revived to accommodate Mes-17. A description for the widespread, yet poorly known Mediterranean species Morchella dunalii is further provided, and a detailed polythetic approach is introduced in systematics, to overcome the inherent difficulties associated with the morphological recognition of phylogenetically confirmed species. The presence on the island of five species of transcontinental distribution, accounting for nearly half of the total number of species recorded, sheds new light on the genus biogeography, questioning the hypothesis of recent anthropogenic dispersals of morel species. Overall, our results place Cyprus as a worldwide hotspot of Morchella diversity, establishing the island as a place of special interest in future studies aiming to decipher the evolutionary history and ecological trends within this iconic genus.

Keywords

Integrative taxonomy Island ecosystem Mediterranean Morchella dunalii Morchella dunensis Morchella vulgaris 

Notes

Acknowledgments

We are indebted to our friend Pablo Alvarado, for generating and analyzing many of the sequences cited in this work; to Marcel Lecomte for his advice on staining chemicals for microscopy; to Yiangos Yiangou, for his valuable field observations and image of Morchella cf galilaea (Fig. 16l); to Father Savvas Michaelides, for his continuous support and collection of M. dunensis (Moutoullas); to Daniel Markides, for his collections of M. disparilis (Prastio) and M. dunensis (Amiantos); to Michalis Georgiades, for his collection of M. rufobrunnea (Ayia Fila); and to Michalis Chelides, for his collections of M. dunalii and M. tridentina (Lythrodontas). We are further grateful to Boris Assyov (Bulgaria), John Karagkiozis (Greece), Kostas Manatakis (Greece), Evgenia Tziava (Greece), Antonio Palazón (Spain), and Olga Godorova (Israel), for kindly providing us with information on the ecology and distribution of morel species outside Cyprus. Last but not least, our gratitude extends to Prof. Gabriel Moreno, for making the holotype and isoparatype of M. dunensis available to us for molecular analysis.

References

  1. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552CrossRefPubMedGoogle Scholar
  2. Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60:685–699CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baral H-O (1992) Vital versus herbarium taxonomy: morphological differences between living and dead cells of Ascomycetes, and their taxonomic implications. Mycotaxon 44(2):333–390Google Scholar
  4. Barseghyan GS, Kosakyan A, Isikhuemhe OS, Didukh M, Wasser SP (2012) Phylogenetic analysis within genera Morchella (Ascomycota, Pezizales) and Macrolepiota (Basidiomycota, Agaricales) inferred from rDNA ITS and EF-1a Sequences. In: Misra JK, Tewari JP, Deshmukh SK (eds) Systipeatics and Evolution of Fungi. Science Publishers, USA, 422 ppGoogle Scholar
  5. Baynes M, Newcombe G, Dixon L, Castlebury L, O’Donnell K (2012) A novel plant-fungal mutualism associated with fire. Fungal Biol 116(1):133–144CrossRefPubMedGoogle Scholar
  6. Behrens A, Georgiev A, Carraro M (2010) Future Impacts of Climate Change across Europe. Working Document No. 324, Centre for European Policy Studies (CEPS), BrusselsGoogle Scholar
  7. Bellanger J-M, Moreau P-A, Corriol G, Bidaud A, Chalange R, Dudova Z, Richard F (2015) Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota). Genetica 143:169–194. doi: 10.1007/s10709-015-9823-8
  8. Boudier E (1897) Révision analytique des morilles de France. Bull Soc Mycol Fr 13:130–150Google Scholar
  9. Boudier E (1909) Icones mycologicae ou iconographie des champignons de France principalement discomycètes avec texte descriptif. Tome II, pl. 194–421. Librairie des Sciences Naturelles, ParisGoogle Scholar
  10. Bresadola G (1932) Iconographia Mycologica, vol 24. Societa Botanica italiana, pl, Trento, pp 1151–1200Google Scholar
  11. Buscot F (1992) Mycorrhizal succession and morel biology. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystipes. CAB International, Wallingford, pp 220–224Google Scholar
  12. Buscot F, Roux J (1987) Association between living roots and ascocarps of Morchella rotunda. Trans Br Mycol Soc 89(2):249–252CrossRefGoogle Scholar
  13. Castañera V, Moreno G (1996) Una Morchella (Morchella esculenta forma dunensis f. nov.) frecuente en las dunas de Cantabria. Yesca, Rev Soc Micólogica de Cántabria 8:27Google Scholar
  14. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  15. Chen J-Y, Liu P-G (2005) A new species of Morchella (Pezizales, Ascomycota) from southwestern China. Mycotaxon 93:89–93Google Scholar
  16. Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R (2006) TreeByn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinf 7:439. doi: 10.1186/1471-2105-7-439 CrossRefGoogle Scholar
  17. Clowez P (1997) Morchella dunensis (Boud.) Clowez (stat. et comb. nov. ad int.). Une bonne espèce pour un mystère nomenclatural. Doc Mycol 26(104):13–20Google Scholar
  18. Clowez P (2012) (‘2010’) Les morilles: Une nouvelle approche mondiale du genre Morchella. Bull Trimest Soc Mycol Fr 126(3–4):199–376Google Scholar
  19. Clowez P, Alvarado P, Becerra M, Bilbao T, Moreau P-A (2014) Morchella fluvialis sp. nov. (Ascomycota, Pezizales): a new but widespread morel in Spain. Bol Soc Micol Madrid 38(2):251–260Google Scholar
  20. Сухомилин ММ, Куткова ОВ, Панiна ЗО (2007) Morchella steppicola Zer.: морфологiчнi особливостi, ультраструктура та поширення в пiвденно-схiднiй Украïнi [Morchella steppicola Zer.: morphological peculiarities, ultrastructure and distribution in southeastern Ukraine] (in Russian). Ukr Bot J 64(6):867–874Google Scholar
  21. Dahlstrom JL, Smith JE, Weber NS (2000) Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis. Mycorrhiza 9(5):279–285CrossRefGoogle Scholar
  22. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. doi: 10.1093/nar/gkn180 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Du X-H, Zhao Q, O’Donnell K, Rooney AP, Yang ZL (2012a) Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China. Fungal Genet Biol 49:455–469CrossRefPubMedGoogle Scholar
  24. Du X-H, Zhao Q, Yang ZL, Hansen K, Taşkın H, Büyükalaca S, Dewsbury D, Moncalvo J-M, Douhan GW, Robert VARG, Crous PW, Rehner SA, Rooney AP, Sink S, O’Donnell K (2012b) How well do ITS rDNA sequences differentiate species of true morels (Morchella)? Mycologia 104:1351–1368CrossRefPubMedGoogle Scholar
  25. Du X-H, Zhao Q, Yang ZL (2015) A review on research advances, issues, and perspectives of morels. Mycology: An International Journal on Fungal Biology. doi: 10.1080/21501203.2015.1016561
  26. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BioMed Cen Bioinform 5:113. doi: 10.1186/1471-2105-5-113 CrossRefGoogle Scholar
  27. Elliott TF, Bougher NL, O’Donnell K, Trappe JM (2014) Morchella australiana sp. nov., an apparent Australian endemic from New South Wales and Victoria. Mycologia 106:113–118CrossRefPubMedGoogle Scholar
  28. Fries EM (1849) Summa Vegetabilum Scandinaviae. Section Posterior 346:259–572Google Scholar
  29. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  30. Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodríguez-Sánchez F, Dobrowski SZ, Hampe A, Hu F-S, Ashcroft MB, Bartlein PJ, Blois JL, Carstens BC, Davis EB, De Lafontaine G, Edwards ME, Fernandez MC, Henne PD, Herring EM, Holden ZA, Kong WS, Liu J, Magri D, Matzke NJ, McGlone MS, Saltré F, Stigall AL, Tsai Y-HE, Williams JW (2014) Climate refugia: Joint inference from fossil records, species distribution models, and phylogeography. New Phytol 204:37–54CrossRefPubMedGoogle Scholar
  31. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 330(8). doi: 10.1029/2006GL025734
  32. Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. doi: 10.1093/nar/gkn180 PubMedPubMedCentralGoogle Scholar
  33. Guzmán G, Tapia F (1998) The known Morels in Mexico, a description of a new blushing species, Morchella rufobrunnea and new data on M. guatemalensis. Mycologia 90:705–714CrossRefGoogle Scholar
  34. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  35. Intergovernmental Panel on Climate Change (IPCC) (2007) The Physical Science Basis, Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  36. Isiloglu M, Alli H, Spooner BM, Solak MH (2010) Morchella anatolica (Ascomycota), a new species from southwestern Anatolia, Turkey. Mycologia 102(2):455–468CrossRefPubMedGoogle Scholar
  37. Jacquetant E (1984) Les Morilles. La Bibliothèque des Arts, Paris, 114 pGoogle Scholar
  38. Kuo M (2008) Morchella tomentosa, a new species from western North America and notes on M. rufobrunnea. Mycotaxon 105:441–446Google Scholar
  39. Kuo M, Dewsbury DR, O’Donnell K, Carter MC, Rehner SA, Moore JD, Moncalvo J-M, Canfield SA, Stephenson SL, Methven AS, Volk TJ (2012) Taxonomic revision of true morels (Morchella) in Canada and the United States. Mycologia 104:1159–1177CrossRefPubMedGoogle Scholar
  40. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808CrossRefPubMedGoogle Scholar
  41. Loizides M (2011) Morchella rufobrunnea, η μορχέλλα της πόλης [Morchella rufobrunnea, the urban morel] (in Greek). Μυκητολόγος [Mycologist] 5:10–13Google Scholar
  42. Loizides M, Kyriakou T, Tziakouris A (2011) Edible & Toxic Fungi of Cyprus (in Greek & English), Published by the authors: 222–229 ISBN: 978-9963-7380-0-7Google Scholar
  43. Loizides M, Alvarado P, Clowez P, Moreau P-A, Romero L, Palazón A (2015) Morchella tridentina, M. rufobrunnea and M. kakiicolor: A study of three poorly known Mediterranean morels, with nomenclatural updates in section Distantes. Mycol Prog 14:13CrossRefGoogle Scholar
  44. Malloch D (1973) Ascospore sculpturing in Morchella (Ascomycetes: Pezizales). Can J Bot 51:1519–1520CrossRefGoogle Scholar
  45. Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89:688–698CrossRefPubMedGoogle Scholar
  46. Masaphy S, Zabari L, Goldberg D (2009) New long-season ecotype of Morchella rufobrunnea from northern Israel. Micología Aplicada Internacional 21(2):45–55Google Scholar
  47. Médail F, Diademal K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean basin. J Biogeogr 36(7):1333–1345Google Scholar
  48. Médail F, Myers N (2004) Mediterranean Basin in Hotspots revisited. Cemex. Conservation International. University of Virginia, pp 144–147Google Scholar
  49. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Mo Bot Gard 84:112–127CrossRefGoogle Scholar
  50. Medardi G (2006) Atlante fortografico degli Ascomiceti d’Italia. Grafica Sette, Bagnolo mella, Brescia, Italia, p 678Google Scholar
  51. Moreau P-A, Hériveau P, Bourgade V, Bellanger J-M, Courtecuisse R, Fons F, Rapior S (2011) Redécouverte et typification des champignons de la région de Montpellier illustrés par Michel-Félix Dunal et Alire Raffeneau-Delile. Cryptogram Mycol 32:255–276CrossRefGoogle Scholar
  52. Myers N (1990) The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10:243–256CrossRefPubMedGoogle Scholar
  53. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  54. Norstedt G, Bader P, Ericson L (2001) Polypores as indicators of conservation value in Corsican pine forests. Biol Conserv 99:347–354CrossRefGoogle Scholar
  55. O’Donnell K, Rooney AP, Mills GL, Kuo M, Weber NS, Rehner SA (2011) Phylogeny and historical biogeography of true Morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genet Biol 48:252–265CrossRefPubMedGoogle Scholar
  56. Persoon CH (1794) Neue Versuch einer Systemtischen Einsteilung der Schwämme. Neues Mag Bot 1:63–128Google Scholar
  57. Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98CrossRefPubMedGoogle Scholar
  58. Richard F, Bellanger J-M, Clowez P, Hansen K, O’Donnell K, Urban A, Sauve M, Courtecuisse R, Moreau P-A (2015) True morels (Morchella, Pezizales) of Europe and North America: Evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia 107(2):359–382CrossRefPubMedGoogle Scholar
  59. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  60. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577CrossRefPubMedGoogle Scholar
  61. Taşkın H, Büyükalaca S, Hüseyin H, Rehner S, O’Donnel K (2010) A multigene molecular phylogenetic assessment of true morels (Morchella). Fungal Genet Biol 47:672–682CrossRefPubMedGoogle Scholar
  62. Taşkın H, Büyükalaca S, Hansen K, O’Donnell K (2012) Multilocus phylogenetic analysis of true morels (Morchella) reveals high levels of endemics in Turkey relative to other regions of Europe. Mycologia 104:446–461CrossRefPubMedGoogle Scholar
  63. Taşkın H, Doğan H, Büyükalaca S, Hüseyin H (2015) Morchella galilaea, an autumn species from Turkey. Mycotaxon 130(1):215–221CrossRefGoogle Scholar
  64. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4):217–263CrossRefPubMedGoogle Scholar
  65. Viney DE (2005) An illustrated introduction to the larger fungi of north Cyprus. Published by the author. ISBN: 0-85546-109-8Google Scholar
  66. Voitk A, Beug MW, O’Donnell K, Burzynski M (2015) Two new species of true morels from Newfoundland and Labrador: cosmopolitan Morchella eohespera and parochial M. laurentiana. Mycologia 108(1):31–37. doi: 10.3852/15-149
  67. Willimott SG (1933) Some edible and poisonous fungi of Cyprus: an investigation of their habitat, uses, nutritive value, toxicology, cases of poisoning and treatment. The Cyprus Government, Nicosia, p 24Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael Loizides
    • 1
    Email author
  • Jean-Michel Bellanger
    • 2
  • Philippe Clowez
    • 3
  • Franck Richard
    • 2
  • Pierre-Arthur Moreau
    • 4
    • 5
  1. 1.LimassolCyprus
  2. 2.UMR 5175 CEFE – Université de Montpellier - INSERMMontpellierFrance
  3. 3.Pont-l’EvêqueFrance
  4. 4.Département des Sciences Végétales et Fongiques, Faculté des Sciences Pharmaceutiques et BiologiquesUniv Lille 2LilleFrance
  5. 5.Univ de Lille, EA 4483, INSERM, Institut Pasteur de LilleLilleFrance

Personalised recommendations