Mycological Progress

, 14:53 | Cite as

Evolution of Hyaloperonospora effectors: ATR1 effector homologs from sister species of the downy mildew pathogen H. arabidopsidis are not recognised by RPP1WsB

  • Irina Solovyeva
  • Angelika Schmuker
  • Liliana M. Cano
  • Mireille van Damme
  • Sebastian Ploch
  • Sophien Kamoun
  • Marco Thines
Original Article


Like other plant-pathogenic oomycetes, downy mildew species of the genus Hyaloperonospora manipulate their hosts by secreting effector proteins. Despite intense research efforts devoted to deciphering the virulence and avirulence activities of effectors in the H. arabidopsidis/Arabidopsis thaliana pathosystem, there is only a single study in this pathosystem on the variation of effectors and resistance genes in natural populations, and the evolution of these effectors in the context of pathogen evolution is studied even less. In this work, the identification of A rabidopsis t haliana recognised (ATR)1-homologs is reported in two sister species of H. arabidopsidis, H. thlaspeos-perfoliati, and H. crispula, which are specialized on the host plants Microthlaspi perfoliatum and Reseda lutea, respectively. ATR1-diversity within these sister species of H. arabidopsidis was evaluated, and the ATR1-homologs from different isolates of H. thlaspeos-perfoliati and H. crispula were tested to see if they would be recognised by the previously characterised RPP1-WsB protein from A. thaliana. None of the effectors from the sister species was recognised, suggesting that due to the adaptation to altered or new targets after a host jump, features of variable effectors might vary to a degree that recognition of orthologous Avr-causing effectors is no longer effective and probably does not contribute to non-host immunity.


Oomycetes ATR-effectors Resistance proteins 



Funding by the LOEWE initiative of the state of Hessen in the framework of the Cluster for Integrative Fungal Research (IPF) and the Biodiversity and Climate Research Centre (BiK-F), as well as from the Max Planck Society and the Gatsby Charitable Foundation are gratefully acknowledged. We are grateful to Ksenia Krasileva and Brian Staskawicz for providing biological material.

Supplementary material

11557_2015_1074_MOESM1_ESM.doc (30 kb)
Supplemental Table 1 (DOC 30 kb)


  1. Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host–parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957–1960PubMedCrossRefGoogle Scholar
  2. Allen RL, Meitz JC, Baumber RE, Hall SA, Lee SC, Rose LE, Beynon JL (2008) Natural variation reveals key amino acids in a downy mildew effector that alters recognition specificity by an Arabidopsis resistance gene. Mol Plant Pathol 9:511–523PubMedCrossRefGoogle Scholar
  3. Bailey K, Cevik V, Holton N, Byrne-Richardson J, Sohn KH, Coates M, Woods-Tör A, Aksoy HM, Hughes L, Baxter L, Jones JD, Beynon J, Holub EB, Tör M (2011) Molecular cloning of ATR5 (Emoy2) from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis. Mol Plant Microbe Interact 24(7):827–838PubMedCrossRefGoogle Scholar
  4. Boutemy LS, King SR, Win J, Hughes RK, Clarke TA, Blumenschein TM, Kamoun S, Banfield MJ (2011) Structures of phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity. J Biol Chem 286:35834–35842PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bozkurt TO, Schornack S, Banfield M, Kamoun S (2012) Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 15:1–10CrossRefGoogle Scholar
  6. Choi Y-J, Hong S-B, Shin H-D (2007) Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol Res 110:381–391CrossRefGoogle Scholar
  7. Choi Y-J, Shin HD, Thines M (2009) Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycol Res 13(Pt 12):1340–1350CrossRefGoogle Scholar
  8. Choi Y-J, Thines M, Han JG, Shin HD (2011) Mitochondrial phylogeny reveals intraspecific variation in Peronospora effusa, the spinach downy mildew pathogen. J Microbiol 49(6):1039–1043PubMedCrossRefGoogle Scholar
  9. Choi Y-J, Beakes G, Glockling S, Kruse J, Nam B, Nigrelli L, Ploch S, Shin HD, Shivas RG, Telle S, Voglmayr H, Thines M (2015) Towards a universal barcode of oomycetes- a comparison of the cox1 and cox2 loci. Mol Ecol Resour. doi: 10.1111/1755-0998 PubMedGoogle Scholar
  10. Chou S, Krasileva KV, Holton JM, Steinbrenner AD, Alber T, Staskawicz BJ (2011) Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces. Proc Natl Acad Sci U S A 108:13323–13328PubMedCentralPubMedCrossRefGoogle Scholar
  11. Dangl JL, Holub EB, Debener T, Lehnackers H, Ritter C, Crute IR (1992) Genetic definition of loci involved in Arabidopsis pathogen interactions. In: Koncz C, Chua NH, Schell J (eds) Methods in arabidopsis research. World Scientific Pub, Singapore, pp 393–418CrossRefGoogle Scholar
  12. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629PubMedCrossRefGoogle Scholar
  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  14. Gäumann E (1918) Über die Formen der Peronospora parasitica (Pers.) Fries. Beih Bot Centralbl 35:395–533Google Scholar
  15. Gäumann E (1923) Beiträge zu einer Monographie der Gattung Peronospora Corda. Beitr Kryptogamenfl Schweiz 5:1–360Google Scholar
  16. Glowacki S, Macioszek VK, Kononowicz AK (2011) R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16:1–24PubMedCrossRefGoogle Scholar
  17. Göker M, Voglmayr H, Riethmüller A, Weiß M, Oberwinkler F (2003) Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can J Bot 81:672–683CrossRefGoogle Scholar
  18. Göker M, Voglmayr H, Blázquéz GG, Oberwinkler F (2009) Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res 113:308–325PubMedCrossRefGoogle Scholar
  19. Goritschnig S, Krasileva KV, Dahlbeck D, Staskawicz BJ (2012) Computational prediction and molecular characterization of an Oomycete effector and the cognate Arabidopsis resistance gene. PLoS Genet 8(2), e1002502PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hall S, Allen RL, Baumber RE, Baxter LA, Fisher K, Bittner-Eddy PD, Rose LE, Holub EB, Beynon JL (2009) Maintenance of genetic variation in plants and pathogens involves complex networks of gene-for-gene interactions. Mol Plant Pathol 10(4):449–457PubMedCrossRefGoogle Scholar
  21. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedCrossRefGoogle Scholar
  22. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22(2):115–122PubMedCrossRefGoogle Scholar
  23. Holsters M, Silva B, Van Vliet F, Genetello C, Block M, Dhaese P, Depicker A, Inzé D, Engler G, Villarroel R, Van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3:212–223PubMedCrossRefGoogle Scholar
  24. Holub EB, Beynon JL, Crute IR (1994) Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol Plant-Microbe Interact 7:223–239CrossRefGoogle Scholar
  25. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedCrossRefGoogle Scholar
  26. Krasileva KV, Dahlbeck D, Staskawicz BJ (2010) Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22(7):2444–2458PubMedCentralPubMedCrossRefGoogle Scholar
  27. Krasileva KV, Zheng C, Leonelli L, Goritschnig S, Dahlbeck D, Staskawicz BJ (2011) Global analysis of Arabidopsis/downy mildew interactions reveals prevalence of incomplete resistance and rapid evolution of pathogen recognition. PLoS One 6(12), e28765PubMedCentralPubMedCrossRefGoogle Scholar
  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685PubMedCrossRefGoogle Scholar
  29. Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145:1232–1240PubMedCentralPubMedCrossRefGoogle Scholar
  30. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V, Poulin MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ, McDonald N, Gai L, Chen H, He Y, European Union Effectoromics Consortium, Vandenhaute J, Roth FP, Hill DE, Ecker JR, Vidal M, Beynon J, Braun P, Dangl JL (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601PubMedCentralPubMedCrossRefGoogle Scholar
  31. Rehmany AP, Lynn JR, Tör M, Holub EB, Beynon JL (2000) A comparison of Peronospora parasitica (downy mildew) isolates from Arabidopsis thaliana and Brassica oleracea using amplified fragment length polymorphism and internal transcribed spacer 1 sequence analyses. Fungal Genet Biol 30:95–103PubMedCrossRefGoogle Scholar
  32. Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PR, Beynon JL (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839–1850PubMedCentralPubMedCrossRefGoogle Scholar
  33. Rentel MC, Leonelli L, Dahlbeck D, Zhao B, Staskawicz BJ (2008) Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci U S A 105:1091–1096PubMedCentralPubMedCrossRefGoogle Scholar
  34. Riethmüller A, Voglmayr H, Göker M, Weiß M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849PubMedCrossRefGoogle Scholar
  35. Runge F, Telle S, Ploch S, Savory E, Day B, Sharma R, Thines M (2011) The inclusion of downy mildews in a multi-locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora. IMA Fungus 2(2):163–171PubMedCentralPubMedCrossRefGoogle Scholar
  36. Schornack S, Huitema E, Cano LM, Bozkurt TO, Oliva R, van Damme M, Schwizer S, Raffaele S, Chaparro-Garcia A, Farrer R, Segretin ME, Bos J, Haas BJ, Zody MC, Nusbaum C, Win J, Thines M, Kamoun S (2010) Ten things to know about oomycete effectors. Mol Plant Pathol 10(6):795–803CrossRefGoogle Scholar
  37. Sharma R, Mishra B, Runge F, Thines M (2014) Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum. Genome Biol Evol 6:2034–2049Google Scholar
  38. Slusarenko AJ, Schlaich NL (2003) Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol Plant Pathol 4:159–170PubMedCrossRefGoogle Scholar
  39. Sökücü A, Thines M (2014) A molecular phylogeny of Basidiophora reveals several apparently host-specific lineages on Astereae. Mycol Progress 13:1137–1143CrossRefGoogle Scholar
  40. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75(5):758–771CrossRefGoogle Scholar
  41. Sumit R, Sahu BB, Xu M, Sandhu D, Bhattacharyya MK (2012) Arabidopsis non-host resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean. BMC Plant Biol 12:87PubMedCentralPubMedCrossRefGoogle Scholar
  42. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  43. Thines M, Kamoun S (2010) Oomycete–plant coevolution: recent advances and future prospects. Curr Opin Plant Biol 13:427–433PubMedCrossRefGoogle Scholar
  44. Thines M, Voglmayr H, Göker M (2009) Taxonomy and phylogeny of the downy mildews (Peronosporaceae). In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interaction and research tools. John Wiley and Sons, Hoboken, pp 47–75CrossRefGoogle Scholar
  45. Voglmayr H (2003) Phylogenetic relationships of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycol Res 107:1132–1142PubMedCrossRefGoogle Scholar
  46. Voglmayr H, Constantinescu O (2008) Revision and reclassification of three Plasmopara species based on morphological and molecular phylogenetic data. Mycol Res 112:487–501PubMedCrossRefGoogle Scholar
  47. Voglmayr H, Riethmüller A, Göker M, Weiß M, Oberwinkler F (2004) Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildews with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data. Mycol Res 108:1011–1024PubMedCrossRefGoogle Scholar
  48. Weigel D, Glazebrook J (2006) Transformation of agrobacterium using electroporation. CSH Protoc. doi: 10.1101/pdb.prot4665
  49. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR (2007) A translocation signal for elivery of oomycete effector proteins into host plant cells. Nature 450:115–118PubMedCrossRefGoogle Scholar
  50. Win J, Krasileva KV, Kamoun S, Shirasu K, Staskawicz BJ, Banfield MJ (2012) Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. PLoS Pathog 8, e1002400PubMedCentralPubMedCrossRefGoogle Scholar
  51. Yerkes WD, Shaw CG (1959) Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathol 49:499–507Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Irina Solovyeva
    • 1
  • Angelika Schmuker
    • 2
  • Liliana M. Cano
    • 3
  • Mireille van Damme
    • 3
    • 6
  • Sebastian Ploch
    • 1
  • Sophien Kamoun
    • 3
  • Marco Thines
    • 1
    • 4
    • 5
  1. 1.Biodiversity and Climate Research Centre (BiK-F)Senckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
  2. 2.Institute of Botany 210University of HohenheimStuttgartGermany
  3. 3.The Sainsbury LaboratoryNorwich Research ParkUK
  4. 4.Integrative Fungal Research Cluster (IPF)Frankfurt am MainGermany
  5. 5.Department of Biosciences, Institute of Ecology, Evolution and DiversityGoethe University Frankfurt am MainFrankfurt am MainGermany
  6. 6.Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations