Advertisement

Mycological Progress

, 13:993 | Cite as

Five new species of the highly diverse genus Plagiostoma (Gnomoniaceae, Diaporthales) from Japan

  • Donald M. Walker
  • Brandy R. Lawrence
  • Jessica A. Wooten
  • Amy Y. Rossman
  • Lisa A. Castlebury
Original Article

Abstract

Members of the genus Plagiostoma (Gnomoniaceae, Diaporthales) are plant pathogenic and endophytic microfungi that inhabit woody and herbaceous plants in temperate regions of the northern hemisphere. In this study, pure cultures were isolated from specimens of Plagiostoma collected in Japan. Regions of the β-tubulin and tef- genes and the complete ITS regions 1 and 2, including the 5.8S rDNA, were sequenced and analyzed phylogenetically. Genealogical concordance phylogenetic species recognition and genealogical non-discordance methods were used to define species. Phylogenetic analyses revealed five previously unknown species of Plagiostoma, which are described and illustrated. These species are associated with host plants in the genera Acer (Sapindaceae) and Salix (Salicaceae).

Keywords

Ascomycetes Phylogeny Plant pathogens Systematics 

Notes

Acknowledgments

This project was funded in part by the National Science Foundation Partnerships for Enhancing Expertise in Taxonomy (NSF 03–28364) to A.Y.R. and L.A.C. Additional funding was awarded to B.R.L. or D.M.W. from the Sigma Xi Grants for Aid in Research, TriBeta Undergraduate Research Grants, Ohio Biological Survey, and The University of Findlay. D.M.W. would like to thank Adam Bazinet for assistance with data analyses; Kentaro Hosaka, Shinobu Inoue, Takao Kobayashi, Tsuyoshi Hosoya, Yousuke Degawa for hosting a collecting trip to Japan and Yuuri Hirooka for coordinating the visit; Christian Feuillet for help with nomenclature; Ryan Vo and Tunesha Phipps for technical assistance; and an anonymous reviewer for constructive comments. The authors declare no conflicts of interest.

References

  1. Bazinet AL, Cummings MP (2008) The Lattice Project: a grid research and production environment combining multiple grid computing models. In: Weber MHW (ed) Distributed & grid computing - science made transparent for everyone. Principles, applications and supporting communities. Rechenkraft.net, Marburg, pp 2–13Google Scholar
  2. Bazinet AL, Myers DS, Fuetsch J, Cummings MP (2007) Grid services base library: a high-level, procedural application program interface for writing globus-based grid services. Futur Gener Comput Syst 23:517–522CrossRefGoogle Scholar
  3. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  4. Cummings MP, Huskamp JC (2005) Grid computing. Educ Rev 40:116–117Google Scholar
  5. Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57:2703–2720. doi: 10.1111/j.0014-3820.2003.tb01514.x PubMedCrossRefGoogle Scholar
  6. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  7. Kobayashi T (1970) Taxonomic studies of Japanese Diaporthaceae with species reference to their life-histories. Bulletin of the Government Forest Experiment Station 226:1–242Google Scholar
  8. Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2008) Phylogenetic placement and taxonomic review of the genus Cryptosporella and its synonyms Ophiovalsa and Winterella (Gnomoniaceae, Diaporthales). Mycol Res 112:23–35PubMedCrossRefGoogle Scholar
  9. Mejía L, Rossman A, Castlebury L, Yang Z, White J (2011a) Occultocarpon, a new monotypic genus of Gnomoniaceae on Alnus nepalensis from China. Fungal Divers 52:99–105. doi: 10.1007/s13225-011-0108-y CrossRefGoogle Scholar
  10. Mejía LC, Rossman AY, Castlebury LA, White JF Jr (2011b) New species, phylogeny, host-associations, and geographic distribution of the genus Cryptosporella (Gnomoniaceae, Diaporthales). Mycologia 103:379–399. doi: 10.3852/10-134 PubMedCrossRefGoogle Scholar
  11. Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2011c) A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, host associations, and a four-gene phylogeny. Stud Mycol 68:211–235. doi: 10.3114/sim.2011.68.10 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Myers DS, Bazinet AL, Cummings MP (2008) Expanding the reach of grid computing: combining Globus- and BOINC-based systems. In: Talbi E-G, Zomaya A (eds) Grids for bioinformatics and computational biology. Wiley, New York, pp 71–85Google Scholar
  13. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116PubMedCrossRefGoogle Scholar
  14. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, SurreyGoogle Scholar
  15. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 PubMedCrossRefGoogle Scholar
  16. Sogonov MV, Castlebury LA, Rossman AY, Farr DF, White JF (2005) The type species of genus Gnomonia, G. gnomon, and the closely related G. setacea. Sydowia 57:102–119Google Scholar
  17. Sogonov MV, Castlebury LA, Rossman AY, Mejía LC, White JF (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud Mycol 62:1–77PubMedCentralPubMedCrossRefGoogle Scholar
  18. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi: 10.1080/10635150701472164 PubMedCrossRefGoogle Scholar
  19. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32PubMedCrossRefGoogle Scholar
  20. Walker DM, Castlebury LA, Rossman AY, Sogonov MV, White JF Jr (2010) Systematics of the genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations, and morphology. Mycologia 102:1479–1496. doi: 10.3852/10-002 PubMedCrossRefGoogle Scholar
  21. Walker DM, Castlebury LA, Rossman AY, White JF Jr (2012a) New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota). Mol Phylogenet Evol 64:500–512PubMedCrossRefGoogle Scholar
  22. Walker DM, Castlebury LA, Rossman AY, Mejía LC, White JF Jr (2012b) Phylogeny and taxonomy of Ophiognomonia (Gnomoniaceae, Diaporthales), including twenty-five new species in this highly diverse genus. Fungal Divers 57:85–147CrossRefGoogle Scholar
  23. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  • Donald M. Walker
    • 1
  • Brandy R. Lawrence
    • 2
  • Jessica A. Wooten
    • 1
  • Amy Y. Rossman
    • 3
  • Lisa A. Castlebury
    • 3
  1. 1.Department of Natural SciencesThe University of FindlayFindlayUSA
  2. 2.College of PharmacyThe University of FindlayFindlayUSA
  3. 3.Systematic Mycology & Microbiology LaboratoryUSDA Agricultural Research ServiceBeltsvilleUSA

Personalised recommendations