Advertisement

Mycological Progress

, Volume 13, Issue 3, pp 819–831 | Cite as

Three new genera of fungi from extremely acidic soils

  • Martina Hujslová
  • Alena Kubátová
  • Martin Kostovčík
  • Robert A. Blanchette
  • Z. Wilhelm de Beer
  • Milada Chudíčková
  • Miroslav Kolařík
Original Article

Abstract

Extremely acidic soils (pH < 3) harbour poorly diversified mycobiota that are very different from less acidic habitats. During investigations of the mycobiota from several highly acidic soils in the Czech Republic and a coastal site in the Antarctic Peninsula, a group of hyaline fungal isolates was obtained. Based on phenotype and nuclear ribosomal DNA sequences (ITS region, SSU, LSU), the isolates belonged to three phylogenetic lineages within two different classes, Sordariomycetes and Leotiomycetes (Pezizomycotina, Ascomycota). The first lineage is described here as a new genus and species Acidothrix acidophila gen. nov. et sp. nov. (Amplistromataceae, Sordariomycetes, Ascomycota). The most closely related species to this new clade are wood-inhabiting fungi. The isolates belonging to the second and the third lineages are also described as two new genera and species Acidea extrema gen. nov. et sp. nov. and Soosiella minima gen. nov. et sp. nov. (Helotiales, Leotiomycetes, Ascomycota). Their position and the relationships within Helotiales are discussed. Soosiella minima was acidotolerant, Acidothrix acidophila and Acidea extrema exhibited both acidotolerant and acidophilic characteristics. All the species were slightly halophilic. The adaptation of hyaline fungi from mesophilic lineages to highly acidic environments has been revealed. The association between highly acidic and Antarctic habitats is discussed.

Keywords

Amplistromataceae Micromycetes Acidophilic Acidomyces Acidiella Helotiales 

Notes

Acknowledgments

This work was supported by the Grant Agency of the Charles University in Prague (project No. 63009), by Czech Institutional Research Concept (No. AV0Z5020903), and by the institutional resources of the Ministry of Education, Youth and Sports of the Czech Republic. We thank the staff of Soos National Natural Reserve and Sedlecky kaolin a. s. for the permission to sample. We are grateful to Ota Rauch for the selection of localities and Radek Pelc for technical assistance. Research in Antarctica was supported by National Science Foundation Grant No. 0537143 to RAB. We would like to thank the British Antarctic Survey (BAS) and the crew of the HMS Endurance for facilitating travel to sites on the Antarctic Peninsula and Dr. Brett Arenz for his work to collect isolates on Snow Hill Island. The senior author also acknowledges the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa, for support during a sabbatical visit to the Institute.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amaral Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3:1–17CrossRefGoogle Scholar
  3. Amaral Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137PubMedCrossRefGoogle Scholar
  4. Amaral Zettler LA, Messerli MA, Laatsch AD, Smith PJS, Sorgin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol Bull 204:205–209PubMedCrossRefGoogle Scholar
  5. Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56PubMedCrossRefGoogle Scholar
  6. Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315CrossRefGoogle Scholar
  7. Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271PubMedCentralPubMedCrossRefGoogle Scholar
  8. Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cavicchioli R, Torsten T (2000) Extremophiles. In: Lederberg J (ed) Encyclopedia of microbiology, vol 2, 2nd edn. Academic Press Inc., San Diego, pp 317–337Google Scholar
  10. Checa J, Blanco MN, Moreno G, Manjón JL, Pasabán P, Alvarado P (2012) Amplistroma longicollis, a new species and its anamorph state described and sequenced from Europe. Mycol Prog 11:647–653CrossRefGoogle Scholar
  11. Checa J, Blanco MN, Moreno G, Alvarado P, Esquivel E (2013) Amplistroma erinaceum, a new species and its anamorph state from Panama. Mycol Prog. doi: 10.1007/s11557-013-0912-8 Google Scholar
  12. Corum CJ (1941) Hydrogen-ion concentration and the initiation of growth. Ohio J Sci 41(5):389–392Google Scholar
  13. Fassatiová O (1986) Moulds and filamentous fungi in technical microbiology. Elsevier, New YorkGoogle Scholar
  14. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  15. Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microb Ecol 42:87–98PubMedGoogle Scholar
  16. Griffin DH (1994) Fungal physiology. Wiley, New YorkGoogle Scholar
  17. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98Google Scholar
  19. Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Anton Leeuw 86:287–294CrossRefGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  21. Huhndorf SM, Miller AN, Greif M, Samuels MG (2009) Amplistroma gen. nov. and its relation to Walrothiella, two genera with globose ascospores and acrodontium-like anamorphs. Mycologia 101(6):904–919PubMedCrossRefGoogle Scholar
  22. Hujslová M, Kubátová A, Chudíčková M, Kolařík M (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycol Prog 9:1–15CrossRefGoogle Scholar
  23. Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Divers 58:33–45CrossRefGoogle Scholar
  24. Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156PubMedCrossRefGoogle Scholar
  25. Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F (2011) Fungi in freshwaters: ecology, physiology and biochemical potential. Fems Microbiol Rev 35:620–651PubMedCrossRefGoogle Scholar
  26. Kushner DJ (1978) Life in high salt and solute concentrations. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368Google Scholar
  27. López-Archilla AI, Amils R (1999) A comparative ecological study of two acidic rivers in southwestern Spain. Microb Ecol 38:146–156PubMedCrossRefGoogle Scholar
  28. López-Archilla AI, Marin I, Amils R (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb Ecol 41:20–35PubMedGoogle Scholar
  29. López-Archilla AI, González AE, Terrón MC, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934PubMedCrossRefGoogle Scholar
  30. Mehrotra MD (1964) Studies on choanephoraceae. 11. Effect of hydrogen-ion concentration. Sydowia (Ann Mycologici Ser II) 17:223–229Google Scholar
  31. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010Google Scholar
  32. Munsell Color Company (1966) Munsell book of color. Munsell Color Company, BaltimoreGoogle Scholar
  33. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  34. O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic, and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–236Google Scholar
  35. Pažoutová S, Šrůtka P, Holusa J, Chudíčková M, Kubátová A, Kolařík M (2012) Liberomyces gen. nov. with two new species of endophytic coelomycetes from broadleaf trees. Mycologia 104(1):198–210PubMedCrossRefGoogle Scholar
  36. Pitt JI (1980) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, LondonGoogle Scholar
  37. Poirot O, O’Toole E, Notredame C (2003) Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acid Res 31:3503–3506PubMedCentralPubMedCrossRefGoogle Scholar
  38. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  39. Rambaut A, Drummond A (2003) Tracer v1. 4. 2007. Available free from http://beast.bio.ed.ac.uk/Tracer
  40. Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedCentralPubMedCrossRefGoogle Scholar
  41. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  42. Verma V (1969) Effect of temperature and hydrogen–ion concentration on three pathogenic fungi. Sydowia 23:164–168Google Scholar
  43. von Kreisel H, Schauer F (1987) Methoden des mykologischen Laboratoriums. Gustav Fischer Verlag, Stuttgart and New YorkGoogle Scholar
  44. Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS (2006a) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41:295–312PubMedCrossRefGoogle Scholar
  45. Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS (2006b) Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98(6):1065–1075PubMedCrossRefGoogle Scholar
  46. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  47. Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455CrossRefGoogle Scholar
  48. Zabel RA, Morrell JJ (1992) Wood microbiology, decay and its prevention. Academic Press, Inc., San DiegoGoogle Scholar
  49. Zak JC, Wildman HG (2004) Fungi in stressful environments. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier/Academic, London, pp 303–315CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martina Hujslová
    • 1
    • 2
  • Alena Kubátová
    • 1
  • Martin Kostovčík
    • 2
    • 3
  • Robert A. Blanchette
    • 4
  • Z. Wilhelm de Beer
    • 5
  • Milada Chudíčková
    • 2
  • Miroslav Kolařík
    • 2
  1. 1.Department of Botany, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague 4Czech Republic
  3. 3.Department of Genetics and Microbiology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  4. 4.Department of Plant PathologyUniversity of MinnesotaSaint PaulUSA
  5. 5.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations