Mycological Progress

, Volume 13, Issue 2, pp 407–427 | Cite as

Transatlantic disjunction in fleshy fungi. I. The Sparassis crispa complex

  • Karen W. Hughes
  • Ana Reboredo Segovia
  • Ronald H. Petersen
Original Article

Abstract

Phylogenies based on ITS and LSU sequences show that the Sparassis crispa complex comprises several monophyletic clades, in some cases co\rresponding to named taxa (i.e. S. crispa, S. radicata), but others lacking names (i.e. eastern and southwestern North American S. “crispa”). In our study, morphological examination of numerous collections also distinguished subtle differences correlated with geographic distribution. Underlying these problems, several taxa lacked type specimens for taxonomic analysis. In this paper, appropriate epitypes are designated and names assigned. Extensive sexual compatibility experiments, described within, indicate that monokaryon, haploid isolates of collections from North America and Europe are consistently sexually compatible to some degree. Inherent in the study, different “species concepts” were tested, with the “biological species concept,” based on sexual compatibility, being the least restrictive. We propose two new taxa, S. americana and S. americana f. arizonica.

Keywords

Cauliflower mushrooms Mating studies Biogeography Hybrids 

Notes

Acknowledgments

Dr. Steve Trudell (University of Washington) and Mr. Brian Luther organized and furnished specimens and spore prints of S. radicata; Dr. Nadezhda Psurtseva furnished dikaryon cultures from the Komarov Botanical Institute, St. Petersburg, Russia. Ms. Rita Rentmeester expedited dikaryon cultures from CFMR, which represented several collections cited by Martin and Gilbertson (1976), and Dr. Beatriz Ortiz-Santana arranged a loan of specimens from CFMR. Dr. Egon Horak investigated the herbarium of IB and identified specimens of S. crispa from the topotype area. Research was supported by a US National Science Foundation Grant to RHP and KWH.

Supplementary material

11557_2013_927_Fig12_ESM.jpg (49 kb)
ESM 1

Crosses between single-spore isolates of Sparassis radicata exemplars. Collections used are: TENN49093 (BC); TENN56253 (CA); TENN67982 (WA); TENN67985 (WA); TENN67997-SAT 295-01 (WA); TENN67999- SAT 301-01 (OR). Solid line = four successful crosses from four attempts with different single-basidiospore isolates. Long dash = three successful crosses of four attempts. Medium dash = two successful crosses of four attempts. Short dash = one successful cross of four attempts (JPEG 49 kb).

11557_2013_927_MOESM1_ESM.tif (637 kb)
High-Resolution Image (TIFF 636 kb)
11557_2013_927_Fig13_ESM.jpg (73 kb)
ESM 2

Crosses between single-spore isolates of exemplars of the Sparassis crispa complex. Collections used are: TENN65974 (TN), TENN65584 (NC; E-US S.crispa” hybrid between clades I and II), TENN65971 (TN E-US S.crispa” hybrid between clades I and II), OKM 7058 (MD, dikaryon culture from CFMR; E-US S. “crispa” clade II); KJM 279 (AZ; spontaneously fruiting dikaryon culture from CFMR); TENN67997-SAT 295-01 (WA; S. “radicata”), TENN67999-SAT 301-01 (OR; S. “radicata”), LE 043 (Germany, S. crispa, dikaryon culture from the Komarov Botanical Institute, St. Petersburg, Russia). Solid line = four successful crosses from four attempts with different single-basidiospore isolates. Long dash = three successful crosses of four attempts. Short dash = two successful crosses of four attempts (JPEG 73 kb).

11557_2013_927_MOESM2_ESM.tif (842 kb)
High-Resolution Image (TIFF 841 kb)

References

  1. Ainsworth AM, Parfitt D, Rogers HJ, Boddy L (2010) Cryptic taxa within European species of Hydnellum and Phellodon revealed by combined molecular and morphological analysis. Fung Ecol 3:65–80CrossRefGoogle Scholar
  2. Bickford D, Lohman DJ, Sodhi NS, Ng PKI, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155PubMedCrossRefGoogle Scholar
  3. Binder M, Hibbett DS, Larsson K-H, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst Biodiv 3:1–45CrossRefGoogle Scholar
  4. Breitenbach J, Kränzlin F (1986) Fungi of Switzerland Vol 2: Nongilled FungiGoogle Scholar
  5. Bruen TC, Philippe H, Bryant D (2006) A simple and robust test for detecting the presence of recombination. Genetics 172:2665–2681PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bruns TD, Gardes M (1993) Molecular tools for the identification of ectomycorrhizal fungi−taxon-specific oligonucleotide probes for suilloid fungi. Mol Ecol 2:233–242PubMedCrossRefGoogle Scholar
  7. Bryant D, Moulton V (2003) Neighbor-net, an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  8. Burdsall HH, Miller OK (1988a) Type studies and nomenclatural considerations in the genus Sparassis. Mycotaxon 31:199–206Google Scholar
  9. Burdsall HH, Miller OK (1988b) Neotypification of Sparassis crispa. Mycotaxon 31:591–593Google Scholar
  10. Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–134CrossRefGoogle Scholar
  11. Cannon PF, Kirk PM (2007) Fungal families of the world. Centre for Agricultural Bioscience International, AmsterdamGoogle Scholar
  12. Carlsen T, Engh IB, Decock C, Rajchenberg M, Kauserud H (2011) Multiple cryptid species with divergent substrate affinities in the Serpula himantioides species complex. Fung Biol 115:54–61CrossRefGoogle Scholar
  13. Cotton AD (1907) On the structure and systematic position of Sparassis. Trans Brit Mycol Soc 3:333–339CrossRefGoogle Scholar
  14. Courtecuisse R, Duhem B (2008) Guide des champignons de France et d’Europe. Delachaux et Niestle. 476 ppGoogle Scholar
  15. Dai Y-C, Wang Z, Binder M, Hibbett DS (2006) Phylogeny and a new species of Sparassis (Polyporales, Basidiomycota): evidence from mitochondrial atp6, nuclear rDNA and rpb2 genes. Mycologia 98:584–592PubMedCrossRefGoogle Scholar
  16. Delatour C (1975) Comportement in vitro du Sparassis crispa Wulf. ex Fr. et su Sparassis laminosa Fr. Eur J For Path 5:240–247CrossRefGoogle Scholar
  17. Desjardin DE, Wang Z, Binder M, Hibbett DS (2004) Sparassis cystidiosa sp. nov. from Thailand is described using morphological and molecular data. Mycologia 96:1010–1014PubMedCrossRefGoogle Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Fries EM (1819) Novit. flora svecica 5(cont.): 80Google Scholar
  20. Fries EM (1821) Systema mycologicum. Lundae 1:1–520Google Scholar
  21. Gilbertson RL, Bigelow DM (1998) Annotated checklist of wood-rotting basidiomycetes of the Sky Islands in southeastern Arizona. J Arizona-Nevada Acad Sci 31:13–36Google Scholar
  22. Gilbertson RL, Martin KJ, Lindsey JP (1974) Annotated checklist and host index for Arizona wood-rotting fungi. Arizona Exp Stat Tech Bull 209:1–48Google Scholar
  23. Gordon SA, Petersen RH (1997) Infraspecific variation among geographically separated collections of Marasmius androsaceus. Mycol Res 101:365–371CrossRefGoogle Scholar
  24. Gordon SA, Petersen RH (1998) Infraspecific variation among geographically separate collections of Marasmius scorodonius. Mycotaxon 69:453–466Google Scholar
  25. Harder CB, Laessøe T, Kjøller R, Frøslev TG (2010) A comparison between ITS phylogenetic relationships and morphological species recognition within Mycena sect. Calodontes in northern Europe. Mycol Prog 9:395–405CrossRefGoogle Scholar
  26. Hawksworth DL (2006) Pandora’s mycological box: molecular sequences vs. morphology in understanding fungal relationships and biodiversity. Rev Iberian Micol 23:127–133CrossRefGoogle Scholar
  27. Hawksworth DL (2012) Addressing the conundrum of unavailable name-bearing types. IMA Fungus 3:155–157PubMedCentralPubMedCrossRefGoogle Scholar
  28. Heitman J, Sun S, James TY (2013) Evolution of fungal sexual reproduction. Mycologia 105:1–27PubMedCrossRefGoogle Scholar
  29. Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 49:215–242CrossRefGoogle Scholar
  30. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxa discovery in fungi and options for formal classification of environmental sequences. Fungal Biol Rev 23:38–47CrossRefGoogle Scholar
  31. Huelsenbeck J, Ronquist F (2000) MrBayes: Bayesian inferences of phylogeny (software). University of California, San DiegoGoogle Scholar
  32. Hughes KW, Petersen RH, Lickey EB (2009) Using heterozygosity to estimate a percentage DNA sequences similarity for environmental species delimitation across basidiomycete fungi. New Phytol 189:795–798CrossRefGoogle Scholar
  33. Hughes KW, Petersen RH, Lodge DJ, Bergemann S, Baumgartner K, Tulloss RT, Lickey EB, Cifuentes-Blanco J (2013) Evolutionary consequences of putative intra- and interspecific hybridization in agaric fungi. Mycologia. doi: 10-3852/13-041
  34. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  35. Jülich W (1981) Higher Taxa of Basidiomycetes. Vaduz, J. KramerGoogle Scholar
  36. Kornerup A, Wanscher JH (1967) Methuen handbook of colour. Methuen & Co., LondonGoogle Scholar
  37. Kreisel H (1983) Zur taxonomie von Sparassis laminosa Fr. s.l. Fed Report 94:675–682Google Scholar
  38. Light W, Woehrel M (2009) Classification of the nomenclatural confusion of the genus Sparassis [Polyporales: Sparassidaceae] in North America. Fungi 2:10–15Google Scholar
  39. Martin KJ, Gilbertson RL (1976) Cultural and other morphological studies of Sparassis radicata and related species. Mycologia 68:622–639CrossRefGoogle Scholar
  40. Mata JL, Hughes KW, Petersen RH (2007) An investigation of/omphalotaceae (Fungi: Euagarics) with emphasis on the genus Gymnopus. Sydowia 58:191–289Google Scholar
  41. Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime CA, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Heinz Clémençon H, Miller OK (2002) One hundred and seventeen clades of Euagarics. Mol Phylogen Evol 23:357–400CrossRefGoogle Scholar
  42. Nieuwenhuis BPS, Debets AJM, Aanen DK (2013) Fungal fidelity: nuclear divorce from a dikaryon by mating or monokaryon regeneration. Fung Biol 117:261–267CrossRefGoogle Scholar
  43. Nilsson RH, Kristinansson E, Ryberg M, Hallenberg N (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform 4:193–201Google Scholar
  44. Osmundson TW, Cripps CI, Mueller GM (2005) Morphological and molecular systematics of Rocky Mountain alpine Laccaria. Mycologia 97:949–972PubMedCrossRefGoogle Scholar
  45. Petersen RH (1992) Mating systems in three New Zealand agarics. N Z J Botany 30:189–197CrossRefGoogle Scholar
  46. Petersen RH, Hughes KW (1999) Species and speciation in mushrooms. Bioscience 49:440–452CrossRefGoogle Scholar
  47. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818PubMedCrossRefGoogle Scholar
  48. Reid DA (1958) New or interesting records of British Hymenomycetes. II. Trans Brit Mycol Soc 41:419–445CrossRefGoogle Scholar
  49. Reid DA (1962) Notes on fungi which have been referred to the Thelephoraceae sensu lato. Persoonia 2:109–170Google Scholar
  50. Reid DA (1965) A monograph of the stipitate stereoid fungi. Nova Hedwig Beih 18:1–382Google Scholar
  51. Ridgway R (1912) Color standards and color nomenclature. Publ. Priv., Washington DCGoogle Scholar
  52. Ryoo R, Sou H-D, Ka K-H, Park H (2013) Phylogenetic relationships of Korean Sparassis latifolia based on morphological and ITS rDNA characteristics. J Microbiol Biotech 51:43–48Google Scholar
  53. Schaeffer JC (1763) Fungorum qui in Bavaria et Palatinu circa Ratisbonam nascuntur. Vol. IIGoogle Scholar
  54. Schaeffer JC (1774) Fungorum qui in Bavaria et Palatinu circa Ratisbonam nascuntur. Vol IV. Index primus. Synonyma et auctoresGoogle Scholar
  55. Sheedy EM, Van de Wouw APV, Howlett BJ, May T (2013) Multigene sequence data reveal morphologically cryptic phylogenetic species within the genus Laccaria in southern Australia. Mycologia 105:547–563PubMedCrossRefGoogle Scholar
  56. Swofford D (2002) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and Other Methods). Sunderland, MA, Sinauer AssociatesGoogle Scholar
  57. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geisser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fung Genet Biol 31:21–32CrossRefGoogle Scholar
  58. Van de Putte K, Nuytinck J, Das K, Verbeken A (2012) Exposing hidden diversity by concordant genealogies and morphology - a study of the Lactifluus volemus (Russulales) species complex in Sikkim Himalaya (India). Fung Divers 55:171–194CrossRefGoogle Scholar
  59. Vilgalys R (1986) Phenetic and cladistic relationships in Collybia sect. Levipedes (Fungi: Basidiomycetes). Taxon 35:225–233CrossRefGoogle Scholar
  60. Vilgalys R (1991) Speciation and species concepts in the Collybia dryophila complex. Mycologia 83:758–773CrossRefGoogle Scholar
  61. Vilgalys R, Miller OK (1983) Biological species in the Collybia dryophila group in North America. Mycologia 75:707–723CrossRefGoogle Scholar
  62. Vilgalys R, Miller OK (1987a) Morphological studies on the Collybia dryophila group in Europe. Trans Brit Mycol Soc 88:461–472CrossRefGoogle Scholar
  63. Vilgalys R, Miller OK (1987b) Mating relationships within the Collybia dryophila group in Europe. Trans Brit Mycol Soc 89:295–300CrossRefGoogle Scholar
  64. Vincenot L, Nara K, Sthultz C, Labbé J, Dubois M-P, Tederson L, Martin F, Selosse M-A (2011) Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol 21:281–299PubMedCrossRefGoogle Scholar
  65. Wang Z, Binder M, Dai Y-C, Hibbett DS (2004) Phylogenetic relationships of Sparassis inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia 96:1015–1029PubMedCrossRefGoogle Scholar
  66. Weir JR (1917) Sparassis radicata, an undescribed fungus on the roots of conifers. Phytopath 7:166–177Google Scholar
  67. White TJ, Arnheim N, Erlich HA (1989) The polymerase chain reaction. Trends Genet 5:185–189PubMedCrossRefGoogle Scholar
  68. Wulfen FX (1781) Plantae rariores Carinthiacae. In: Jacquin, 2. Misc. Austriaca Bot Chem Hist Nat 2:25–138Google Scholar
  69. Yang ZL (2011) Molecular techniques revolutionize knowledge of basidiomycete evolution. Fungal Biodiv 50:47–58CrossRefGoogle Scholar
  70. Zhao Q, Feng B, Yang Z-L, Dai Y-C, Wang Z, Tolgor B (2013) New species and distinctive geographical divergences of the genus Sparassis (Basidiomyota): evidence from morphological and molecular data. Mycol Prog 12:445–454CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karen W. Hughes
    • 1
  • Ana Reboredo Segovia
    • 1
  • Ronald H. Petersen
    • 1
  1. 1.Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations