Advertisement

Mycological Progress

, Volume 13, Issue 2, pp 219–240 | Cite as

Molecular phylogenetic analyses reveal three new Ceratocystis species and provide evidence for geographic differentiation of the genus in Africa

  • Michael Mbenoun
  • Michael J. Wingfield
  • Aimé D. Begoude Boyogueno
  • Brenda D. Wingfield
  • Jolanda RouxEmail author
Original Article

Abstract

The emergence of wattle wilt disease on non-native Acacia mearnsii trees in Africa, caused by the indigenous fungus Ceratocystis albifundus, has highlighted a need to better understand the diversity, ecology and distribution of Ceratocystis species in natural African environments. In this study we applied phylogenetic inference to identify and characterize isolates of Ceratocystis collected in a natural savanna ecosystem in South Africa. Three new species were recognized and are described as C. cryptoformis sp. nov. in the C. moniliformis complex, as well as C. thulamelensis sp. nov. and C. zambeziensis sp. nov., both residing in the C. fimbriata complex. Incorporating the new species into global phylogenies of Ceratocystis provided insights into the patterns of evolution and biogeography of this group of fungi. Notably, the African continent was identified as an important centre of diversification of Ceratocystis spp., from which several lineages of these fungi were shown to have radiated.

Keywords

Biogeographic lineages Fungal plant pathogens GCPSR GMYC Microascales Savanna ecosystem Species delimitation 

Notes

Acknowledgements

This study was supported financially by the Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB) of South Africa. We are grateful to the South African National Parks (SanParks) scientific services at Skukuza for technical and logistical assistance during the field survey and to Prof. Timothy Barraclough for his advice on using the GMYC model.

References

  1. Al-subhi AM, Al-adawi AO, Van Wyk M, Deadman ML, Wingfield MJ (2006) Ceratocystis omanensis, a new species from diseased mango trees in Oman. Mycol Res 110:237–245. doi: 10.1016/j.mycres.2005.08.007 PubMedCrossRefGoogle Scholar
  2. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544. doi: 10.1016/j.tree.2004.07.021 PubMedCrossRefGoogle Scholar
  3. Baker Engelbrecht CJ, Harrington TC (2005) Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 97:57–69CrossRefGoogle Scholar
  4. Baker CJ, Harrington TC, Krauss U, Alfenas AC (2003) Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopathology 93:1274–1284PubMedCrossRefGoogle Scholar
  5. Barnes I, Roux J, Wingfield BD, Dudzinski MJ, Old KM, Wingfield MJ (2003) Ceratocystis pirilliformis, a new species from Eucalyptus nitens in Australia. Mycologia 95:865–871PubMedCrossRefGoogle Scholar
  6. Barnes I, Nakabonge G, Roux J, Wingfield BD, Wingfield MJ (2005) Comparison of populations of the wilt pathogen Ceratocystis albifundus in South Africa and Uganda. Plant Pathol 54:189–195. doi: 10.1111/j.1365-3059.2005.01144.x CrossRefGoogle Scholar
  7. Burdon JJ, Thrall PH, Ericson L (2006) The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39. doi: 10.1146/annurev.phyto.43.040204.140238 PubMedCrossRefGoogle Scholar
  8. Burgess T, Wingfield MJ (2002) Impact of fungal pathogens in natural forest ecosystems: a focus on Eucalyptus. In: Sivasithamparam K, Dixon KW, Barett RL (eds) Microorganisms in plant conservation and biodiversity. Kluwer, Dordrecht, pp 285–306Google Scholar
  9. Castello JD, Leopold DJ, Smallidge PJ (1995) Pathogens, patterns, and processes in forest ecosystems. Bioscience 45:16–24CrossRefGoogle Scholar
  10. Dinoor A, Eshed N (1984) The role and importance of pathogens in natural plant communities. Annu Rev Phytopathol 22:443–466CrossRefGoogle Scholar
  11. Dodds P, Thrall P (2009) Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust. Funct Plant Biol 36:395–408PubMedCentralPubMedCrossRefGoogle Scholar
  12. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi: 10.1186/1471-2148-7-214 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Ezard T, Fujisawa T, Baraclough T (2009) Species limits by threshold statistics. http://r-forge.r-project.org/projects/splits/
  14. Frank SA (1992) Models of plant-pathogen coevolution. Trends Genet 8:213–219PubMedCrossRefGoogle Scholar
  15. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 6:1323–1330Google Scholar
  16. Heath RN, Wingfield MJ, Wingfield BD, Meke G, Roux J (2009) Ceratocystis species on Acacia mearnsii and Eucalyptus spp. in Eastern and Southern Africa including six new species. Fungal Divers 34:41–67Google Scholar
  17. Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418. doi: 10.1017/S0953756204009748 PubMedCrossRefGoogle Scholar
  18. Johnson JA, Harrington TC, Engelbrecht CJB (2005) Phylogeny and taxonomy of the North American clade of the Ceratocystis fimbriata complex. Mycologia 97:1067–1092PubMedCrossRefGoogle Scholar
  19. Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species, including three new taxa associated with wounds on native South African trees. Fungal Divers 29:37–59Google Scholar
  20. Kamgan Nkuekam G, Wingfield MJ, Mohammed C, Carnegie AJ, Pegg GS, Roux J (2012a) Ceratocystis species, including two new species associated with nitidulid beetles, on eucalypts in Australia. Antonie van Leeuwenhoek 101:217–241. doi: 10.1007/s10482-011-9625-7
  21. Kamgan Nkuekam G, Wingfield MJ, Roux J (2012b) Ceratocystis species, including two new taxa, from Eucalyptus trees in South Africa. Aust Plant Pathol. doi: 10.1007/s13313-012-0192-9 Google Scholar
  22. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi: 10.1093/nar/gki198 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Moller WJ, De Vay JE (1968) Carrot as species-selective isolation medium for Ceratocystis fimbriata. Phytopathology 58:123–126Google Scholar
  24. Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116PubMedCentralPubMedCrossRefGoogle Scholar
  25. Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. Adv Neural Inf Proc Syst 21:1113–1120Google Scholar
  26. Morris MJ, Wingfield MJ, de Beer C (1993) Gummosis and wilt of Acacia mearnsii in South Africa caused by Ceratocystis fimbriata. Plant Pathol 42:814–817CrossRefGoogle Scholar
  27. Nag Raj TR, Kendrick WB (1975) In: Laurier W (ed) A monograph of Chalara and allied genera. Laurier University Press, WaterlooGoogle Scholar
  28. Parker IM, Gilbert GS (2004) The evolutionary ecology of novel plant-pathogen interactions. Annu Rev Ecol Evol Syst 35:675–700. doi: 10.1146/annurev.ecolsys.34.011802.132339 CrossRefGoogle Scholar
  29. Pons J, Barraclough TG, Gomez-zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609. doi: 10.1080/10635150600852011 PubMedCrossRefGoogle Scholar
  30. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. doi: 10.1093/molbev/msn083 PubMedCrossRefGoogle Scholar
  31. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  32. Rambaut A, Drummond AJ (2009) Tracer v1.5, Available from http://beast.bio.ed.ac.uk/Tracer
  33. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute Kew, Surrey and British Mycological SocietyGoogle Scholar
  34. Réblová M, Gams W, Seifert KA (2011) Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Stud Mycol 68:163–191. doi: 10.3114/sim.2011.68.07 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Rodas CA, Roux J, Van Wyk M, Wingfield BD, Wingfield MJ (2008) Ceratocystis neglecta sp. nov., infecting Eucalyptus trees in Colombia. Fungal Divers 28:73–84Google Scholar
  36. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 PubMedCrossRefGoogle Scholar
  37. Roux J, Wingfield MJ (2009) Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species. South Forest 71:115–120. doi: 10.2989/SF.2009.71.2.5.820 CrossRefGoogle Scholar
  38. Roux J, Wingfield MJ (2013) Ceratocystis species on the African continent, with particular reference to C. albifundus, an African species in the C. fimbriata sensu lato species complex. In: KA Seifert, W De Beer, MJ Wingfield (eds) The Ophiostomatoid Fungi: Expanding Frontiers. Biodiversity Series 12 CBS, Utrecht, the Netherlands, pp 131–138Google Scholar
  39. Roux J, Harrington TC, Steimel JP, Wingfield MJ (2001a) Genetic variation in the wattle wilt pathogen Ceratocystis albofundus. Mycoscience 42:327–332CrossRefGoogle Scholar
  40. Roux J, Wingfield MJ, Mujuni Byabashaija D (2001b) First report of Ceratocystis Wilt of Acacia mearnsii in Uganda. Plant Dis 85:1029CrossRefGoogle Scholar
  41. Roux J, Wingfield MJ, Bouillet J-P,Wingfield BD, Alfenas AC (2000) A serious new wilt disease of Eucalyptus caused by ceratocystis fimbriata in Central Africa. Forest Pathol 30:175–184Google Scholar
  42. Roux J, Meke G, Kanyi B, Mwangi L, Mbaga A, Hunter GC, Nakabonge G et al (2005) Diseases of plantation forestry trees in Eastern Africa. S Afr J Sci 101:1–5Google Scholar
  43. Roux J, Heath RN, Labuschagne L, Kamgan Nkuekam K, Wingfield MJ (2007) Occurrence of the wattle wilt pathogen, Ceratocystis albifundus on native South African trees. For Pathol 37:292–302. doi: 10.1111/j.1439-0329.2007.00507.x CrossRefGoogle Scholar
  44. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Schoch CL, Sung G-H, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V et al (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239. doi: 10.1093/sysbio/syp020 PubMedCrossRefGoogle Scholar
  46. Stukenbrock EH, Mcdonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100. doi: 10.1146/annurev.phyto.010708.154114 PubMedCrossRefGoogle Scholar
  47. Swofford DL (2002) Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, SunderlandGoogle Scholar
  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Tarigan M, Roux J, Van Wyk M, Tjahjono B, Wingfield MJ (2010a) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. S Afr J Bot 77:292–304. doi: 10.1016/j.sajb.2010.08.006 CrossRefGoogle Scholar
  50. Tarigan M, Van Wyk M, Roux J, Tjahjono B, Wingfield MJ (2010b) Three new Ceratocystis spp. in the Ceratocystis moniliformis complex from wounds on Acacia mangium and A. crassicarpa. Mycoscience 51:53–67. doi: 10.1007/s10267-009-0003-5 CrossRefGoogle Scholar
  51. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32. doi: 10.1006/fgbi.2000.1228 PubMedCrossRefGoogle Scholar
  52. Thompson JN, Burdon JJ (1992) Gene-for gene coevolution between plant and parasites. Nature 360:121–125CrossRefGoogle Scholar
  53. Upadhyay HP (1981) A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, AthensGoogle Scholar
  54. Van Wyk M, Roux J, Barnes I, Wingfield BD, Chhetri DB, Kirisits T, Wingfield MJ (2004a) Ceratocystis bhutanensis sp. nov., associated with the bark beetle Ips schmutzenhoferi on Picea spinulosa in Bhutan. Stud Mycol 50:365–379Google Scholar
  55. Van Wyk M, Roux J, Barnes I, Wingfield BD, Liew ECY, Assa B, Summerell BA et al (2004b) Ceratocystis polychroma sp. nov., a new species from Syzygium aromaticum in Sulawesi. Stud Mycol 50:273–282Google Scholar
  56. Van Wyk M, Roux J, Barnes I, Wingfield BD, Wingfield MJ (2006a) Molecular phylogeny of the Ceratocystis moniliformis complex and description of C. tribiliformis sp. nov. Fungal Divers 21:181–201Google Scholar
  57. Van Wyk M, Van Der Merve NA, Roux J, Wingfield BD, Kamgam Nkuekam G, Wingfield MJ (2006b) Population genetic analyses suggest that the eucalyptus fungal pathogen Ceratocystis fimbriata has been introduced into South Africa. S Afr J Sci 102:259–263Google Scholar
  58. Van Wyk M, Al Adawi AO, Khan IA, Deadman ML, Al Jahwari AA, Wingfield BD, Ploetz R et al (2007a) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Divers 27:213–230Google Scholar
  59. Van Wyk M, Pegg G, Lawson S, Wingfield MJ (2007b) Ceratocystis atrox sp. nov. associated with Phoracantha acanthocera infestations on Eucalyptus grandis in Australia. Aust Plant Pathol 36:407–414. doi: 10.1071/AP07042
  60. Van Wyk M, Wingfield BD, Clegg PA, Wingfield MJ (2009a) Ceratocystis larium sp. nov., a new species from Styrax benzoin wounds associated with incense harvesting in Indonesia. Persoonia 22:75–82PubMedCentralPubMedCrossRefGoogle Scholar
  61. Van Wyk M, Wingfield BD, Marin M, Wingfield MJ (2009b) Ceratocystis fimbriatomima, a new species in the C. fimbriata sensu lato complex isolated from Eucalyptus trees in Venezuela. Fungal Divers 34:173–183Google Scholar
  62. Van Wyk M, Wingfield BD, Marin M, Wingfield MJ (2010) New Ceratocystis species infecting coffee, cacao, citrus and native trees in Colombia. Fungal Divers 40:103–117. doi: 10.1007/s13225-009-0005-9 CrossRefGoogle Scholar
  63. Van Wyk M, Wingfield BD, Al-adawi AO, Rossetto CJ, Ito MF, Wingfield MJ (2011a) Two new Ceratocystis species associated with mango disease in Brazil. Mycotaxon 117:381–404CrossRefGoogle Scholar
  64. Van Wyk M, Wingfield BD, Wingfield MJ (2011b) Four new Ceratocystis spp. associated with wounds on Eucalyptus, Schizolobium and Terminalia trees in Ecuador. Fungal Divers 46:111–131. doi: 10.1007/s13225-010-0051-3 CrossRefGoogle Scholar
  65. Van Wyk M, Roux J, Kamgan Nkuekam G, Wingfield BD, Wingfield MJ (2012) Ceratocystis eucalypticola sp. nov. from Eucalyptus in read South Africa and comparison to global isolates from this tree. IMA FUNGUS 3:45–58. doi: 10.5598/imafungus.2012.03.01.06
  66. Van Wyk M, Wingfield BD, Wingfield MJ (2013) Ceratocystis species in the Ceratocystis fimbriata complex. In: KA Seifert, W De Beer, MJ Wingfield (eds) The Ophiostomatoid Fungi: Expanding Frontiers. Biodiversity Series 12 CBS, Utrecht, the Netherlands, pp 65–73Google Scholar
  67. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic, New York, pp 230–257Google Scholar
  68. Wingfield MJ, de Beer C, Visser C, Wingfield BD (1996) A New Ceratocystis species defined using morphological and ribosomal DNA sequence comparisons. Syst Appl Microbiol 19:191–202. doi: 10.1016/S0723-2 020(96)80045-2 CrossRefGoogle Scholar
  69. Wingfield BD, Van Wyk M, Roos H, Wingfield MJ (2012) Ceratocystis: emerging evidence for discrete generic boundaries. In: KA Seifert, DE Beer W, MJ Wingfield (eds) The Ophiostomatoid Fungi: Expanding Frontiers. Biodiversity Series 12 CBS, Utrecht, the Netherlands, pp 57–64Google Scholar
  70. Yuan ZQ, Mohammed C (2002) Ceratocystis moniliformopsis sp. nov., an early coloniser of Eucalyptus obliqua logs in Tasmania, Australia. Aust Syst Bot 15:125–133Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Mbenoun
    • 1
  • Michael J. Wingfield
    • 1
  • Aimé D. Begoude Boyogueno
    • 1
    • 3
  • Brenda D. Wingfield
    • 2
  • Jolanda Roux
    • 1
    Email author
  1. 1.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  3. 3.Institute of Agricultural Research for Development (IRAD), NkolbissonYaoundéCameroon

Personalised recommendations