Advertisement

Mycological Progress

, Volume 11, Issue 4, pp 953–956 | Cite as

In situ extraction of RNA from marine-derived fungi associated with the marine sponge, Haliclona simulans

  • Paul W. BakerEmail author
  • Alan D. W. Dobson
  • Julian Marchesi
Short Communication

Abstract

Several different methods were compared to recover a significant quantity of high quality RNA from H. simulans containing RNA of marine-derived fungi. Further processing of the RNA showed that amplification products could be obtained using fungal specific primers, RNA enriched in mRNA could be recovered and an oligonucleotide-linker could be attached to cDNA. The potential applications of these methods are discussed for future studies in determining whether marine fungi could be symbiotically associated with marine sponges.

Keywords

Haliclona simulans Marine fungi RNA Symbiosis 

References

  1. Anderson IC, Parkin PI (2007) Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. J Microbiol Methods 68:248–253PubMedCrossRefGoogle Scholar
  2. Bailly J, Fraissinet-Tachet L, Verner M-C, Debaud J-C, Lemaire M, Wésolowski-Louvel M, Marmeisse R (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642PubMedCrossRefGoogle Scholar
  3. Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547PubMedCrossRefGoogle Scholar
  4. Baptiste J, Edwards DM, Delort J, Mallet J (1991) Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5′ ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res 19:5227–5232CrossRefGoogle Scholar
  5. Grant S, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2006) Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples. Appl Environ Microbiol 72:135–143PubMedCrossRefGoogle Scholar
  6. Li Y, Wang W, Du X, Yuan Q (2010) An improved RNA isolation method for filamentous fungus Blakeslea trispora rich in polysaccharides. Appl Biochem Biotechnol 160:322–327PubMedCrossRefGoogle Scholar
  7. Moeseneder MM, Arrieta JM, Herndl GJ (2005) A comparison of DNA- and RNA-based clone libraries from the same marine bacterioplankton community. FEMS Microbiol Ecol 51:341–352PubMedCrossRefGoogle Scholar
  8. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126PubMedCrossRefGoogle Scholar
  9. Rusche JR, Howard-Flanders P (1985) Hexamine cobalt chloride promotes intermolecular ligation of blunt end DNA fragments by T4 DNA ligase. Nucleic Acids Res 13:1997–2008PubMedCrossRefGoogle Scholar
  10. Santiago-Vázquez LZ, Ranzer LK, Kerr RG (2006) Comparison of two total RNA extraction protocols using the marine gorgonian coral Pseudopterogorgia elisabethae and its symbiont Symbiodinum sp. Electron J Biotechnol 9:598–603CrossRefGoogle Scholar
  11. Simister RL, Schmitt S, Taylor MW (2011) Evaluating methods for the preservation and extraction of DNA and RNA for analysis of microbial communities in marine sponges. J Exp Mar Biol Ecol 297:38–43CrossRefGoogle Scholar
  12. Smit E, Leeflang P, Galndorf B, van Elsas JD, Werners K (1999) Analysis of fungal diversity in the wheat rhizophere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621PubMedGoogle Scholar
  13. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCrossRefGoogle Scholar
  14. Voglmayr H, Mayer V, Maschwitz U, Moog J, Djieto-Lordon C, Blatrix R (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115:1077–1091PubMedCrossRefGoogle Scholar
  15. Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026PubMedCrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer 2011

Authors and Affiliations

  • Paul W. Baker
    • 1
    Email author
  • Alan D. W. Dobson
    • 2
  • Julian Marchesi
    • 3
  1. 1.School of Environment, Natural Resources and GeographyBangor UniversityBangorUK
  2. 2.Environmental Research InstituteUniversity College CorkCorkIreland
  3. 3.School of Biosciences, Museum AvenueCardiff UniversityCardiffUK

Personalised recommendations