Mycological Progress

, Volume 11, Issue 2, pp 543–554 | Cite as

3,000 species and no end – species richness and community pattern of woodland macrofungi in Mecklenburg-Western Pomerania, Germany

  • Martin Unterseher
  • Benno Westphal
  • Norbert Amelang
  • Florian Jansen
Original Article


In addition to newly generated and continuously growing datasets in mycological research, existing compilations are of high value to assess the fungi of a whole region. In the present study, a private database with ca. 65,000 entries of macromycetous fruit body observations in Mecklenburg-Western Pomerania, Germany, was analysed. Observed species richness of tree-associated mycorrhizal and saprobic fungi exceeded 3,000 taxa. The total fungal species richness could not be determined with confidence but will possibly exceed 4,000. Distinct species turnover with respect to host trees was observed. However, the rate of community overlap clearly differed between mycorrhizal and saprobic fungi and deciduous and coniferous trees. By separating the data into abundant core species and rare satellite taxa potential indicator species are presented, whose preservation will be beneficial to many other fungi and the entire ecosystems they live in.


Biodiversity survey Volunteers Indicator species Community ecology Species richness estimation 



We are grateful to Hanns Kreisel for many very helpful comments on the manuscript and for providing access to his unpublished Funga of Mecklenburg-Western Pomerania. Many thanks go to numerous honorary mycologists, especially Ria Bütow, Joe Duty, Hanns Kreisel, Siegmund Olm, Torsten Richter, Katrin Richter, Gerhard Rüdiger, Ingeborg Schmidt, Manfred Schubert, Brigitte Schurig and Jürgen Schwik as well as the Arbeitsgruppe Mykologie Hamburg for professional mapping of fungal occurrences in MV. The “Landesforstanstalt Mecklenburg-Vorpommern” is thanked for providing areal data of host trees. Hans-Jürgen Hardtke and Frank Dämmrich are thanked for providing basic fungal data from Saxony. The reprocessing of fungal data for public access within the “Biological survey databases and herbaria in Mecklenburg-Vorpommern” (programming by Florian Jansen and Falco Glöckler) is currently funded by the “Landesamt für Umwelt, Naturschutz und Geologie (LUNG)”, the “Norddeutsche Stiftung für Umwelt und Entwicklung”, the Institute of Botany and Landscape Ecology, the “Institut für Dauerhaft Umweltgerechte Entwicklung von Naturräumen der Erde (DUENE)”, and coordinated by the working group “Mykologie Mecklenburg-Vorpommern” (responsibility Norbert Amelang) and the Institute of Botany and Landscape Ecology (responsibility Florian Jansen). Two anonymous reviewers are thanked for valuable comments on a previous manuscript.

Supplementary material

11557_2011_769_MOESM1_ESM.pdf (63 kb)
ESM 1 (PDF 62.9 kb) (1.1 mb)
ESM 2 (ZIP 1.09 mb) (2.2 mb)
ESM 3 (ZIP 2.21 mb)


  1. Abarenkov K, Nilsson RH, Larsson K-H et al (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285PubMedCrossRefGoogle Scholar
  2. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communitites with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565PubMedCrossRefGoogle Scholar
  3. Anon (1992) Rote Liste der gefährdeten Grosspilze in Deutschland. Deutsche Gesellschaft für Mykologie e.V., Naturschutzbund Deutschland e.V. (NABU)Google Scholar
  4. Anon (2004) Fauna-Flora-Habitat-Richtlinie, Anhang I Auszug der in Mecklenburg-Vorpommern vorkommenden Lebensraumtypen. Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, Güstrow (; last accessed Mar 2011).
  5. Binion DE, Stephenson SL, Roody WC, Burdsall HH, Miller OK, Vasilyeva LN (2008) Macrofungi associated with oaks of eastern North America. West Virginia Univ. Press.Google Scholar
  6. Bohannan BJM, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6:282–287PubMedCrossRefGoogle Scholar
  7. Breitenbach J, Kränzlin F (1984–2005) Pilze der Schweiz Bd. 1–6. Edition Mykologia, LuzernGoogle Scholar
  8. Chao A, Chazdon RL, Colwell RK, Shen T-J (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361–371PubMedCrossRefGoogle Scholar
  9. Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Anim Ecol 78:573–584PubMedCrossRefGoogle Scholar
  10. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B 345:101–118CrossRefGoogle Scholar
  11. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22Google Scholar
  12. Cunningham RB, Lindenmayer DB (2005) Modeling count data of rare species: Some statistical issues. Ecology 86:1135–1142CrossRefGoogle Scholar
  13. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ( last accessed Mar 2011).
  14. Dietz JM, Dietz LA, Nagagata EY (1994) The effective use of flagship species for conservation of biodiversity: the example of lion tamarins in Brazil. In: Olney PJS, Mace GM, Feistner ATC (eds) Creative Conservation: Interactive Management of Wild and Captive Animals. Chapman and Hall, London, pp 32–49Google Scholar
  15. Dolan JR, Ritchie ME, Tunin-Ley A, Pizay M-D (2009) Dynamics of core and occasional species in the marine plankton: tintinnid ciliates in the north-west Mediterranean Sea. J Biogeo 36:887–895CrossRefGoogle Scholar
  16. Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodivers Conserv 15:3949–3969CrossRefGoogle Scholar
  17. Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004CrossRefGoogle Scholar
  18. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106:22427–22432PubMedCrossRefGoogle Scholar
  19. Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, CambridgeGoogle Scholar
  20. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  21. Gryndler M, Lipavsky J (1995) Effect of phosphate fertilization on the populations of arbuscular mycorrhizal fungi. Rost Vyroba 41:533–540Google Scholar
  22. Hansen L, Knudsen H (1992–2000) Nordic Macromycetes Vol. 1–3. Nordesvamp, Copenhagen.Google Scholar
  23. Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221CrossRefGoogle Scholar
  24. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  25. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  26. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891PubMedCrossRefGoogle Scholar
  27. Heilmann-Clausen J (2001) A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycol Res 105:575–596CrossRefGoogle Scholar
  28. Heilmann-Clausen J, Christensen M (2005) Wood-inhabiting macrofungi in Danish beech-forests – conflicting patterns and their implications in a conservation perspective. Biol Conserv 122:633–642CrossRefGoogle Scholar
  29. Hein S, Collet C, Ammer C, LeGoff N, Skovsgaard J-P, Savill P (2009) A review on growth and stand dynamics of sycamore (Acer pseudoplatanus L.) in Europe: implications for silviculture. Forestry 82:361–385CrossRefGoogle Scholar
  30. Horak E (2005) Röhrlinge und Blätterpilze in Europa. Elsevier, HeidelbergGoogle Scholar
  31. Joshee S, Paulus BC, Park D, Johnston PR (2009) Diversity and distribution of fungal foliar endophytes in New Zealand Podocarpaceae. Mycol Res 113:1003–1015PubMedCrossRefGoogle Scholar
  32. Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448PubMedCrossRefGoogle Scholar
  33. Kirk P, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth &Bisby’s Dictionary of the Fungi, 10th edn. CAB International,Wallingford, UKGoogle Scholar
  34. Krieglsteiner GJ (1991) Verbreitungsatlas der Großpilze Deutschlands (West). Band 1: Ständerpilze, Teil A: Nichtblätterpilze. Ulmer, Stuttgart.Google Scholar
  35. Krieglsteiner GJ (1993) Verbreitungsatlas der Großpilze Deutschlands (West). Band 2: Schlauchpilze. Ulmer, Stuttgart.Google Scholar
  36. Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856CrossRefGoogle Scholar
  37. Landres PB, Verner J, Thomas JW (1988) Ecological uses of vertebrate indicator species - a critique. Conserv Biol 2:316–328CrossRefGoogle Scholar
  38. Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22CrossRefGoogle Scholar
  39. Lovell S, Hamer M, Slotow R, Herbert D (2009) An assessment of the use ofvolunteers for terrestrial invertebrate biodiversity surveys. BiodiversConserv 18:3295–3307Google Scholar
  40. Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716PubMedCrossRefGoogle Scholar
  41. May RM (1991) A fondness for fungi. Nature 352:475–476CrossRefGoogle Scholar
  42. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon, USAGoogle Scholar
  43. McGill BJ, Etienne RS, Gray JS et al (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015PubMedCrossRefGoogle Scholar
  44. Molina R, Horton TR, Trappe JM, Marcot BG (2011) Addressing uncertainty: How to conserve and manage rare or little-known fungi. Fungal Ecol 4:134–146CrossRefGoogle Scholar
  45. Mueller GM, Schmit JP, Leacock PR et al (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48CrossRefGoogle Scholar
  46. Noss RF (1990) Indicators for monitoring biodiversity - a hierarchical approach. Conserv Biol 4:355–364.Google Scholar
  47. Noss RF (1999) Assessing and monitoring forest biodiversity: A suggested framework and indicators. For Ecol Manag 115:135–146CrossRefGoogle Scholar
  48. Novotny V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572CrossRefGoogle Scholar
  49. Oksanen J, Blanchet FG, Kindt R, et al. (2010) Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Available at (last accessed March 2011).
  50. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437PubMedCrossRefGoogle Scholar
  51. Ovaskainen O, Nokso-Koivisto J, Hottola J et al (2010) Identifying wood-inhabiting fungi with 454 sequencing – what is the probability that BLAST gives the correct species? Fungal Ecol 3:274–283CrossRefGoogle Scholar
  52. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263PubMedCrossRefGoogle Scholar
  53. Power ME, Tilman D, Estes JA et al (1996) Challenges in the quest for keystones. Bioscience 46:609–620CrossRefGoogle Scholar
  54. Reeder J, Knight R (2009) The 'rare biosphere': a reality check. Nat Methods 6:636–637PubMedCrossRefGoogle Scholar
  55. Rolstad J, Gjerde I, Gundersen VS, Saetersdal M (2002) Use of indicator species to assess forest continuity: a critique. Conserv Biol 16:253–257CrossRefGoogle Scholar
  56. Schmitt J (2007) Rote Liste der Pilze des Saarlandes – Tabellarische Zusammenstellungen der Taxa in den verschiedenen Gefährdungskategorien. Landesamt für Umwelt- und Arbeitsschutz, Zentrum für Biodokumentation, Schiffweiler. (; last accessed Mar 2011).
  57. Schwik J, Westphal B (1999) Rote Liste der gefährdeten Großpilze Mecklenburg-Vorpommerns. Das Umweltministerium des Landes Mecklenburg-Vorpommern, Schwerin. (; last accessed Mar 2011)
  58. Täglich U (2009) Pilzflora von Sachsen-Anhalt. Ascomyceten, Basidiomyceten, Aquatische Hyphomyceten. Leibniz-Institut für Pflanzenbiochemie, Halle (Saale).Google Scholar
  59. Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333PubMedCrossRefGoogle Scholar
  60. Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897CrossRefGoogle Scholar
  61. Ulrich W, Zalewski M (2006) Abundance and co-occurrence patterns of core and satellite species of ground beetles on small lake islands. Oikos 114:338–348CrossRefGoogle Scholar
  62. Ulrich W, Ollik M, Ugland KI (2010) A meta-analysis of species–abundance distributions. Oikos 119:1149–1155CrossRefGoogle Scholar
  63. Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol 3:366–378CrossRefGoogle Scholar
  64. Unterseher M, Otto P, Morawetz W (2005) Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol Prog 4:117–132CrossRefGoogle Scholar
  65. Unterseher M, Schnittler M, Dormann C, Sickert A (2008) Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiol Lett 282:205–213PubMedCrossRefGoogle Scholar
  66. Unterseher M, Jumpponen A, Öpik M et al (2011) Species abundance distributions and richness estimations in fungal metagenomics - lessons learned from community ecology. Mol Ecol 20:275–285PubMedCrossRefGoogle Scholar
  67. Wilkinson FA, Foster MS (2004) Institutions with significant collections of fungi or fungal allies and fungus-related websites. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of Fungi – Inventory and Monitoring Methods. Elsevier, Amsterdam, pp 619–626Google Scholar
  68. Zhang Y, Guo L-D, Liu RJ (2004) Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil 261:257–263CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer 2011

Authors and Affiliations

  • Martin Unterseher
    • 1
  • Benno Westphal
    • 2
  • Norbert Amelang
    • 3
  • Florian Jansen
    • 4
  1. 1.Dept. of Systematic Botany, Insitute of Botany and Landscape EcologyErnst-Moritz-Arndt UniversityGreifswaldGermany
  2. 2.Fachgruppe Mykologie VorpommernWeitenhagenGermany
  3. 3.Neuhofer Weg 6Neuhof/BobitzGermany
  4. 4.Dept. of Landscape Ecology, Insitute of Botany and Landscape EcologyErnst-Moritz-Arndt UniversityGreifswaldGermany

Personalised recommendations