Advertisement

Mycological Progress

, Volume 11, Issue 2, pp 515–533 | Cite as

A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa

  • Gilbert Kamgan Nkuekam
  • Zacharias Wilhelm de Beer
  • Michael John Wingfield
  • Jolanda Roux
Original Article

Abstract

Fungi in the Ophiostomatales include important pathogens of trees as well as agents of wood stain, reducing the economic value of timber. They rely on insects, such as bark beetles, for dispersal and are commonly associated with wounds on trees. Although Ophiostoma spp. have been reported from eucalypt wood chips in South Africa, very little is known about the diversity of the Ophiostomatales, or their insect associates, on plantation-grown Eucalyptus spp. The aim of this study was to consider the diversity and distribution of the Ophiostomatales infecting fresh wounds on Eucalyptus trees in the country. Additionally, knowledge regarding their association with nitidulid beetles, which have previously been shown to carry Ophiostoma spp., was sought. Surveys were conducted in five provinces where Eucalyptus spp. are commonly grown, and the fungi collected were identified using morphological comparisons and multigene sequence phylogenies. Of the 139 isolates collected, five Ophiostoma spp. were identified including O. quercus, O. tsotsi and O. tasmaniense. These were from cut stumps as well as from the nitidulid beetles Brachypeplus depressus and Carpophilus spp. In addition, two new taxa in the O. stenoceras–Sporothrix schenckii complex were identified from Eucalyptus trees infested by Phoracantha semipunctata. The two new taxa are described as O. candidum sp. nov., and O. fumeum sp. nov., respectively. The results of this study clearly show that the diversity and ecology of Ophiostoma spp. on Eucalyptus trees in South Africa is poorly understood and that further studies are required to determine the possible economic relevance of these fungi.

Keywords

Cerambycidae Forestry Nitidulidae Ophiostomatales Sporothrix 

Notes

Acknowledgements

We thank the DST/NRF Center of Excellence in Tree Health Biotechnology (CTHB), National Research Foundation of South Africa (NRF), the THRIP Initiative of the Department of Trade and Industry (THRIP/DST), members of the Tree Protection Co-operative Programme (TPCP) and the University of Pretoria for funding and the facilities to undertake this study. Dr. Andrew Cline from the USA is thanked for assisting us with the identification of insects collected in this study. We further thank Dr. Hugh Glen who provided the Latin diagnoses and made suggestions for the names of the new taxa. Samples from Zambia were collected through a NRF research grant to Prof. J. Roux and Dr. Muimba A. Kankolongo of the Copperbelt University, Kitwe, Zambia.

References

  1. Aghayeva DN, Wingfield MJ, De Beer ZW, Kirisits T (2004) Two new Ophiostoma species with Sporothrix anamorphs from Austria and Azerbaijan. Mycologia 96:866–878PubMedCrossRefGoogle Scholar
  2. Aghayeva DN, Wingfield MJ, Kirisits T, Wingfield BD (2005) Ophiostoma dentifundum sp. nov. from oak in Europe, characterized using molecular phylogenetic data and morphology. Mycol Res 109:1127–1136PubMedCrossRefGoogle Scholar
  3. Anonymous 2008. Eucalyptus online book & newsletter, Number 16. (www.eucalyptus.com.br/newsseng_ag08.html).
  4. Brasier CM (2000) Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In: Dunn CP (ed) The elms: breeding, conservation and disease management. Kluwer, Boston, pp 61–72Google Scholar
  5. Brasier CM, Kirk SA (1993) Sibling species within Ophiostoma piceae. Mycol Res 97:811–816CrossRefGoogle Scholar
  6. Bridges JR, Moser JC (1986) Relationship of phoretic mites (Acari: Tarsonemidae) to the bluestaining fungus, Ceratocystis minor, in trees infested by southern pine beetle (Coleoptera, Scolytidae). Environ Entomol 15:951–953Google Scholar
  7. Chung WH, Kim J, Yamaoka Y, Uzunovic A, Masuya H, Breuil C (2006) Ophiostoma breviusculum sp. nov. (Ophiostomatales, Ascomycota) is a new species in the Ophiostoma piceae complex associated with bark beetles in infesting larch in Japan. Mycologia 98:801–814PubMedCrossRefGoogle Scholar
  8. Cobb FW Jr (1988) Leptographium wageneri, cause of black-stain root disease: A review of its discovery, occurrence and biology with emphasis on pinyon and ponderosa pine. In: Harrington TC, Cobb FW Jr (eds) Leptographium root diseases on conifers. American Phytopathological Society, St Paul, pp 41–62Google Scholar
  9. Crane JL, Schoknecht JD (1973) Conidiogenesis in Ceratocystis ulmi, Ceratocystis piceae and Graphium penicillioides. Am J Bot 60:346–354CrossRefGoogle Scholar
  10. De Beer ZW, Wingfield MJ (2006) Emerging lineages, genera and Ecological patterns in the Ophiostomatales. In: Ophiostomatoid fungi: Expanding frontiers, 16–18 August 2006, North Stradbroke Island Brisbane, Australia, Abstract pp. 17Google Scholar
  11. De Beer ZW, Wingfield BD, Wingfield MJ (2003a) The Ophiostoma piceae-complex in the Southern Hemisphere: a phylogenetic study. Mycol Res 107:469–476PubMedCrossRefGoogle Scholar
  12. De Beer ZW, Harrington TC, Vismer HF, Wingfield BD, Wingfield MJ (2003b) Phylogeny of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 95:434–441PubMedCrossRefGoogle Scholar
  13. De Hoog GS (1974) The genera Blastobotrys, Sporothrix, Calcarisporium and Calcarisporiella gen. nov. Stud Mycol 7:1–84Google Scholar
  14. De Meyer EM, De Beer ZW, Summerbell RC, Moharram AM, De Hoog GS, Vismer HF, Wingfield MJ (2008) Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 100:647–661PubMedCrossRefGoogle Scholar
  15. Fergusson NDM (1982) Pooter post. Antenna 6:282–284Google Scholar
  16. Findlay GH (1970) The epidemiology of sporotrichosis in the Transvaal. Sabouraudia 7:231–236PubMedCrossRefGoogle Scholar
  17. Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Annu Rev Phytopathol 16:287–307CrossRefGoogle Scholar
  18. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedGoogle Scholar
  19. Grobbelaar JW, Barnes I, Cortinas M-N, Bloomer P, Wingfield MJ, Wingfield BD (2008) Development and characterization of polymorphic markers for the sap stain fungus Ophiostoma quercus. Mol Ecol Res 9:399–401CrossRefGoogle Scholar
  20. Grobbelaar JW, Aghayeva D, De Beer ZW, Bloomer P, Wingfield MJ, Wingfield BD (2009) Delimitation of Ophiostoma quercus and its synonyms using multiple gene phylogenies. Mycol Prog 8:221–236CrossRefGoogle Scholar
  21. Grobbelaar JW, De Beer ZW, Bloomer P, Wingfield MJ, Wingfield BD (2010a) Ophiostoma tsotsi sp. nov., a wound-infesting fungus of hardwood trees in Africa. Mycopathologia 169:413–423PubMedCrossRefGoogle Scholar
  22. Grobbelaar JW, De Beer ZW, Bloomer P, Wingfield MJ, Zhou XD, Wingfield BD (2010b) Discovery of Ophiostoma tsotsi on Eucalyptus wood chips in China. Mycoscience 52:111–118CrossRefGoogle Scholar
  23. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  24. Halmschlager E, Messner R, Kowalski T, Prillinger H (1994) Differentiation of Ophiostoma piceae and Ophiostoma quercus by morphology and RADP analysis. Syst Appl Microbiol 17:554–562CrossRefGoogle Scholar
  25. Harrington TC (1993) Diseases of conifers caused by species of Ophiostoma and Leptographium. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. American Phytopathological Society, St. Paul, pp 161–172Google Scholar
  26. Harrington TC, McNew D, Steimel J, Hofstra D, Farrell R (2001) Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi. Mycologia 93:111–136CrossRefGoogle Scholar
  27. Heath RN, Van Wyk M, Roux J, Wingfield MJ (2009) Insect associates of Ceratocystis albifundus and patterns of association in a native savanna ecosystem in South Africa. Environ Entomol 38:356–364PubMedCrossRefGoogle Scholar
  28. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754PubMedCrossRefGoogle Scholar
  29. Jacobs K, Kirisits T (2003) Ophiostoma kryptum sp. nov. from Larix deciduas and Picea abies in Europe, similar to O. minus. Mycol Res 107:1231–1242PubMedCrossRefGoogle Scholar
  30. Jacobs K, Wingfield MJ (2001) Leptographium species. Tree pathogens, insect associates and agents of blue stain. American Phytopathological Society, St. PaulGoogle Scholar
  31. Jacobs K, Wingfield MJ, Roux J (1999) Leptographium eucalyptophilum, a new species from Eucalyptus in the Congo. S Afr J Bot 65:388–391Google Scholar
  32. Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418PubMedCrossRefGoogle Scholar
  33. Juzwik J, French DW (1983) Ceratocystis fagacearum and C. piceae on the surfaces of free-flying and fungus-mat-inhabiting nitidulids. Phytopathology 73:1164–1168CrossRefGoogle Scholar
  34. Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008a) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59Google Scholar
  35. Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008b) Pesotum australi sp. nov. and Ophiostoma quercus associated with Acacia mearnsii trees in Australia and Uganda. Australas Plant Pathol 37:406–416CrossRefGoogle Scholar
  36. Kamgan Nkuekam G, Solheim H, De Beer ZW, Jacobs K, Grobbelaar JW, Wingfield MJ, Roux J (2010a) Ophiostoma species, including Ophiostoma borealis sp. nov., infecting wounds of native broad-leaved trees in Norway. Cryptogam Mycol 31:285–303Google Scholar
  37. Kamgan Nkuekam G, De Beer ZW, Wingfield MJ et al. (2010b) Ophiostoma species (Ophiostomatales, Ascomycota), including two new taxa on eucalypts in Australia. Austral J Bot 59: 283–297Google Scholar
  38. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298PubMedCrossRefGoogle Scholar
  39. Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier F, Day KR, Battistis A, Gregoire JC, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer, The Netherlands, pp 181–235CrossRefGoogle Scholar
  40. Lawes MJ, Eeley HAC, Shackleton CM et al. (2004) Indigenous Forests and Woodlands in South Africa. University of KwaZulu-Natal PressGoogle Scholar
  41. Linnakoski R, De Beer ZW, Rousi M, Solheim H, Wingfield MJ (2009) Ophiostoma denticiliatum sp. nov. and other Ophiostoma species associated with the birch bark beetle in southern Norway. Persoonia 23:9–15PubMedCrossRefGoogle Scholar
  42. Madrid H, Gene J, Cano J, Silvera C, Guarro J (2010) Sporothrix brunneoviolacea and Sporothrix dimorphospora, two new members of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 102:1193–1203PubMedCrossRefGoogle Scholar
  43. Malloch D, Blackwell M (1993) Dispersal biology of the ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. American Phytopathological Society, St. Paul, pp 195–206Google Scholar
  44. Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J (2007) Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol 45:3198–3206PubMedCrossRefGoogle Scholar
  45. Marimon R, Gené J, Cano J, Guarro J (2008) Sporothrix luriei: a rare fungus from clinical origin. Med Mycol 46:621–625PubMedCrossRefGoogle Scholar
  46. Mathiesen-Käärik A (1953) Eine Übersicht über die gewöhnlichsten mit Borkenkäfern assoziierten Bläuepilze in Schweden und einige für Schweden neue Bläuepilze. Medd Statens Skogsforskningsinst 43:1–74Google Scholar
  47. Moller WJ, Devay JE (1968) Insect transmission of Ceratocystis fimbriata in deciduous fruit orchards. Phytopathology 58:1499–1507Google Scholar
  48. Morelet M (1992) Ophiostoma querci sur chene en France. Ann Soc Sci Nat Archeol Toulon 44:106–112Google Scholar
  49. Moser JC (1997) Phoretic mites and their hyperphoretic fungi associated with flying Ips typographus Japonicus Niijima (Col., Scolytidae) in Japan. J Appl Entomol 121:425–428CrossRefGoogle Scholar
  50. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116PubMedCrossRefGoogle Scholar
  51. Paciura D, Zhou XD, De Beer ZW, Jacobs K, Wingfield MJ (2010) Characterization of synnematous bark beetle-associated fungi from China, including Graphium carbonarium sp. nov. Fungal Divers 40:75–88CrossRefGoogle Scholar
  52. Paine TD, Raffa KF, Harrington TC (1997) Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206PubMedCrossRefGoogle Scholar
  53. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  54. Przybyl K, De Hoog GS (1989) On the variability of Ophiostoma piceae. Anton van Leeuwenhoek 55:177–188CrossRefGoogle Scholar
  55. Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, SurreyGoogle Scholar
  56. Roets F, de Beer ZW, Dreyer LL, Zipfel R, Crous PW, Wingfield MJ (2006) Multigene phylogeny for Ophiostoma spp. reveals two new species from Protea infructescences. Stud Mycol 55:199–212PubMedCrossRefGoogle Scholar
  57. Roets F, Crous PW, Wingfield MJ, Dreyer LL (2007) Discovery of fungus-mitemutualism within a unique niche of the Cape Floral Kingdom. Environ Entomol 36:1226–1237PubMedCrossRefGoogle Scholar
  58. Roets F, De Beer ZW, Wingfield MJ, Crous PW, Dreyer LL (2008) Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa. Mycologia 100:496–510PubMedCrossRefGoogle Scholar
  59. Roets F, Dreyer LL, Crous PW, Wingfield MJ (2009) Mite-mediated hyperphoretic dispersal of Ophiostoma spp. from the infructescences of South African Protea spp. Environ Entomol 38:143–152PubMedCrossRefGoogle Scholar
  60. Roets F, Wingfield BD, De Beer ZW, Wingfield MJ, Dreyer LL (2010) Two new Ophiostoma species from Protea caffra in Zambia. Persoonia 24:18–28PubMedCrossRefGoogle Scholar
  61. Romón P, Zhou X, Iturrondobeitia JC, Wingfield MJ, Goldarazena A (2007) Ophiostoma species (Ascomycetes, Ophiostomatales) associated with bark beetles (Coleoptera, Scolytinae) colonizing Pinus radiata in northern Spain. Can J Microbiol 53:756–767PubMedCrossRefGoogle Scholar
  62. Seifert KA (1993) Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. American Phytopathological Society, St. Paul, pp 141–151Google Scholar
  63. Six DL (2003) Bark beetle fungus symbiosis. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, New York, pp 97–114CrossRefGoogle Scholar
  64. Swofford DL (1998) PAUP Phylogenetic analysis using parsimony (and other methods), Version 4. Sinaur, SunderlandGoogle Scholar
  65. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  66. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a sequencing guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  67. Whitney HS (1982) Relationships between bark beetles and symbiotic organisms. In: Mitton JB, Sturgeon KB (eds) Bark beetles in North American conifers. A system for the study of evolutionary biology. University of Texas Press, Austin, pp 183–211Google Scholar
  68. Wingfield MJ, Kendrick B, Van Wyk SP (1991) Analysis of conidium ontogeny in anamorphs of Ophiostoma: Pesotum and Phialographium are synonyms of Graphium. Mycol Res 95:1328–1333CrossRefGoogle Scholar
  69. Zhou XD, De Beer ZW, Wingfield BD, Wingfield MJ (2001) Ophiostomatoid fungi associated with three pine-infesting bark beetles in South Africa. Sydowia 53:290–300Google Scholar
  70. Zhou XD, De Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277PubMedCrossRefGoogle Scholar
  71. Zipfel RD, De Beer ZW, Jacobs K, Wingfield MJ, Wingfield BD (2006) Multigene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97PubMedCrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer 2011

Authors and Affiliations

  • Gilbert Kamgan Nkuekam
    • 1
  • Zacharias Wilhelm de Beer
    • 1
  • Michael John Wingfield
    • 1
  • Jolanda Roux
    • 1
  1. 1.Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations