Mycological Progress

, Volume 11, Issue 1, pp 287–297

Exploration type-specific standard values of extramatrical mycelium – a step towards quantifying ectomycorrhizal space occupation and biomass in natural soil

  • Rosemarie B Weigt
  • Stefan Raidl
  • Rita Verma
  • Reinhard Agerer
Original Article

Abstract

The present study aims at providing standard values for the exploration type (ET)-specific quantification of extramatrical mycelium (EMM) of ectomycorrhizal fungi applicable to ecological field studies. These values were established from mycelial systems of ectomycorrhizae (ECM) synthesized in rhizotrons with near-to-natural peat substrate. Based on image analysis, the “Specific Potential Mycelial Space Occupation” (sPMSO), i.e. the ET-specific complete area that is covered by the EMM systems (mm2 cm−1 ECM−1), and the “Specific Actual Mycelial Space Occupation” (sAMSO), i.e. the projection area of mycelial systems (mm2 cm−1 ECM−1), were analyzed as an extension of a previously described approach. The “Specific Extramatrical Mycelial Length” (sEML) [m cm−1 ECM−1] and the “Specific Extramatrical Mycelial Biomass” (sEMB) (μg cm−1 ECM−1) were calculated for each of the ET via the proportion of hyphal projected area, hyphal length and biomass, the latter two being derived from previous measurements on Piloderma croceum, a “Medium-Distance” (MD)-ET. Both sPMSO and sAMSO were highest for the “Long-Distance” (LD)-ET, whereas those of the “Short-Distance” (SD)-ET and MD-ET were similar, although showing high variation. In contrast, mycelial density per occupied area of the MD-ET was twice as high as that of the LD-ET. Proportional to the sAMSO, the EMM length and biomass differed considerably between the three ET with values of the MD-ET being 1.9 times higher than those of SD-ET, and those of the LD-ET being 15 times higher than those of the SD-ET. These standards in relation to ECM length may ease quantification of mycelial space occupation and biomass in a relatively simple way. Thereby, the ET-specific contribution of EMM can be distinguished—also of non-cultivable species—and up-scaling to large-scale estimation of cost/benefit relations is possible.

Keywords

Ectomycorrhiza Extramatrical mycelium Exploration type Space occupation Mycelial biomass 

References

  1. Agerer R (1987–2008) Colour atlas of ectomycorrhizae. 1st-14th del. Einhorn, Schwäbisch GmündGoogle Scholar
  2. Agerer R (1991) Characterization of ectomycorrhizae. In Norris JR, Read DA, Varma AK (eds) Techniques for the study of mycorrhiza. Methods in Microbiology, vol. 23. Academic, New York, pp 25-73Google Scholar
  3. Agerer R (2001) Exploration types of ectomycorrhizal mycelial systems. A proposal to classify mycorrhizal mycelial systems with respect to their ecologically important contact area with the substrate. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  4. Agerer R (2002) The ectomycorrhiza Piceirhiza internicrassihyphis: a weak competitor of Cortinarius obtusus? Mycol Prog 1(3):291–299CrossRefGoogle Scholar
  5. Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5(2):67–107CrossRefGoogle Scholar
  6. Agerer R (2007) Diversity of ectomycorrhizae as seen from below and above ground: the exploration types. Z Mykol 73(1):61–88Google Scholar
  7. Agerer R (2009) Bedeutung der Ektomykorrhiza für Waldökosysteme. Rundgespräche der Kommission für Ökologie, Bd. 37, Ökologische Rolle von Pilzen. Pfeil, München, pp 111–121Google Scholar
  8. Agerer R, Raidl S (2004) Distance related half-quantitative estimation of the extramatrical ectomycorrhizal mycelia of Cortinarius obtusus and Tylospora asterophora. Mycol Prog 3(1):57–64CrossRefGoogle Scholar
  9. Agerer R, Rambold G (2004–2009) (first posted on 2004-06-01; most recent update: 2009-01-26). DEEMY – An Information System for Characterization and Determination of Ectomycorrhizae. München, Germany. www.deemy.de/
  10. Agerer R, Grote R, Raidl S (2002) The new method ‘micromapping’, a means to study species-specific associations and exclusions of ectomycorrhizae. Mycol Prog 1(2):155–166CrossRefGoogle Scholar
  11. Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228CrossRefGoogle Scholar
  12. Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31(4):388–406PubMedCrossRefGoogle Scholar
  13. Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73CrossRefGoogle Scholar
  14. Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245PubMedCrossRefGoogle Scholar
  15. Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134:685–695CrossRefGoogle Scholar
  16. Chapin SF III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, BerlinGoogle Scholar
  17. Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404PubMedCrossRefGoogle Scholar
  18. Colpaert JV, van Assche JA, Luijtens K (1992) The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth responses of Pinus sylvestris L. New Phytol 120(1):127–135CrossRefGoogle Scholar
  19. Colpaert JV, van Tichelen KK (1996) Mycorrhizas and environmental stress. In Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Symposium of the British Mycological Society. Cambridge University Press, Cambridge pp 109-128Google Scholar
  20. Donnelly DP, Boddy L, Wilkins MF (1999) Image analysis — a valuable tool for recording and analysing development of mycelial systems. Mycologist 13(3):120–125CrossRefGoogle Scholar
  21. Donnelly DP, Boddy L (2001) Mycelial dynamics during interactions between Stropharia caerulea and other cord-forming, saprotrophic basidiomycetes. New Phytol 151(3):691–704CrossRefGoogle Scholar
  22. Donnelly DP, Boddy L, Leake JR (2004) Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza 14(1):37–45PubMedCrossRefGoogle Scholar
  23. Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus inolutus in ectomycorrhizal association with Betula pendula. New Phytol 135:133–142CrossRefGoogle Scholar
  24. Ekblad A, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and axtramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451CrossRefGoogle Scholar
  25. Finlay R, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen MJ (ed) Mycorrhizal functioning. Chapman & Hall, New York, pp 135–160Google Scholar
  26. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390PubMedCrossRefGoogle Scholar
  27. Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in apatite amended and non amended mesh bags buried in a phosphorus poor spruce forest. Mycol Res 112:681–688PubMedCrossRefGoogle Scholar
  28. Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Simms SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186PubMedCrossRefGoogle Scholar
  29. Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569PubMedCrossRefGoogle Scholar
  30. Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83CrossRefGoogle Scholar
  31. Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795CrossRefGoogle Scholar
  32. Holmgren PK, Holmgren NH, Barnett LC (1990) Index Herbariorum, Part I. Herbaria of the World. 8th edn. [Regnum Vegetabile No. 120.]. New York Botanical Garden, New York. (http://www.nybg.org/bsci/ih/ih.html)
  33. Hortal S, Pera J, Parladé J (2008) Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 18(2):69–77PubMedCrossRefGoogle Scholar
  34. Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationship and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol 115(2):259–268CrossRefGoogle Scholar
  35. Kammerbauer H, Agerer R, Sandermann H (1989) Studies on ectomycorrhiza XXII. Mycorrhizal rhizomorphs of Thelephora terrestris and Pisolithus tinctorius in association with Norway spruce (Picea abies): formation in vitro and translocation of phosphate. Trees 3:78–84CrossRefGoogle Scholar
  36. Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology 90:2098–2107PubMedCrossRefGoogle Scholar
  37. Kjøller R (2006) Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol Ecol 58:214–224PubMedCrossRefGoogle Scholar
  38. Klamer M, Bååth E (2004) Estimation of conversion factors for fungal biomass determination ion compost using ergosterol and PLFA 18:2 omega 6,9. Soil Biol Biochem 36:57–65CrossRefGoogle Scholar
  39. Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smit E (2003) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283–292PubMedCrossRefGoogle Scholar
  40. Leake J, Johnson D, Donelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystems. Can J Bot 82(8):1016–1045CrossRefGoogle Scholar
  41. López-Mondéjar R, Antón A, Raidl S, Ros M, Pascual JA (2010) Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass. Bioresour Technol 101(8):2888–2891PubMedCrossRefGoogle Scholar
  42. Majdi H, Truus L, Johansson U (2008) Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. For Ecol Manage 255:2109–2117CrossRefGoogle Scholar
  43. Markkola AM, Othonen R, Tarvainen O, Ahonen-Jonnarth U (1995) Estimates of fungal biomass in Scots pine stands on an urban pollution gradient. New Phytol 131:139–147CrossRefGoogle Scholar
  44. Martin PM (1996) The genus Rhizopogon in Europe. Edicions especials de la Societat Catalana de Micologia 5, BarcelonaGoogle Scholar
  45. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections: I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  46. Moser M (1987) Basidiomyceten II. Röhrlinge und Blätterpilze (Agaricales). Kleine Kryptogamenflora. II/b2. 2nd edition. StuttgartGoogle Scholar
  47. Newton AC (1992) Towards a functional classification of ectomycorrhizal fungi. Mycorrhiza 2:75–79CrossRefGoogle Scholar
  48. Nilsson LO, Giesler R, Bååth E, Wallander H (2005) Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622PubMedCrossRefGoogle Scholar
  49. Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Studies in Ecology 4. Blackwell, OxfordGoogle Scholar
  50. Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174PubMedCrossRefGoogle Scholar
  51. Parladé J, Hortal S, Pera J, Galipienso L (2007) Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. J Biotechnol 128:14–23PubMedCrossRefGoogle Scholar
  52. Peterson RL, Chakravarty P (1991) Techniques in synthesizing ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Methods Microbiol 23:75–106CrossRefGoogle Scholar
  53. Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J Microbiol Meth 58:233–241CrossRefGoogle Scholar
  54. Raidl S (1997) Studien zur Ontogenie an Rhizomorphen von Ektomykorrhizen. Bibliotheca Mycologica, vol 169. Cramer, BerlinGoogle Scholar
  55. Raidl S, Bonfigli R, Agerer R (2005) Calibration of quantitative real-time TaqMan PCR by correlation of hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biol 7:713–717PubMedCrossRefGoogle Scholar
  56. Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. An integrative plant-fungal process. Chapman & Hall, New York, pp 102–133Google Scholar
  57. Rosling A, Rosenstock N (2008) Ectomycorrhizal fungi in mineral soil. Mineralog Mag 72:127–130CrossRefGoogle Scholar
  58. Rousseau JV, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient absorbing surface of pine. New Phytol 128(639):644Google Scholar
  59. Rygiewicz PT, Andersen CP (1994) Mycorrhiza alter quality and quantity of carbon allocated below ground. Nature 369:58–60CrossRefGoogle Scholar
  60. Schubert R, Raidl S, Funk R, Bahnweg G, Müller-Starck G, Agerer R (2003) Quantitative detection of the ectomycorrhizal fungus Piloderma croceum Erikss. & Hjortst. by fluorescent polymerase chain reaction in comparison with direct observation methods. Mycorrhiza 13:159–165PubMedCrossRefGoogle Scholar
  61. Simard SW, Perry DA, Smith JE, Molina R (1997) Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136(2):327–340CrossRefGoogle Scholar
  62. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  63. Söderström B (2002) Challenges for mycorrhizal research into the new millennium. Plant Soil 244:1–7CrossRefGoogle Scholar
  64. Stalpers JA (1993) The Aphyllophoraceous fungi I. Keys to the species of the Thelephorales. Stud Mycol 35:1–168Google Scholar
  65. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256CrossRefGoogle Scholar
  66. Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760CrossRefGoogle Scholar
  67. Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J (2003) Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65PubMedGoogle Scholar
  68. Wallander H (2006) External mycorrhizal mycelia – the importance of quantification in natural ecosystems. New Phytol 171:240–242PubMedCrossRefGoogle Scholar
  69. Wallander H, Johansson U, Sterkenburg E, Brandström Durling M, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134PubMedCrossRefGoogle Scholar
  70. Weigt R, Raidl S, Verma R, Rodenkirchen H, Göttlein A, Agerer R (2010) Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza (published online, doi:10.1007/s00572-010-0343-1)
  71. Werner H, Fabian P (2002) Free-air fumigation of mature trees. Environ Sci Pollut Res 9:117–121CrossRefGoogle Scholar
  72. Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9(3):151–159CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer 2011

Authors and Affiliations

  • Rosemarie B Weigt
    • 1
  • Stefan Raidl
    • 1
  • Rita Verma
    • 1
  • Reinhard Agerer
    • 1
  1. 1.Department of Biology I and GeoBio-Center (LMU), Division of Organismic Biology: MycologyLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations