Mycological Progress

, Volume 10, Issue 2, pp 149–155 | Cite as

Molecular phylogeny of Psilocybe cyanescens complex in Europe, with reference to the position of the secotioid Weraroa novae-zelandiae

  • Jan Borovička
  • Machiel E. Noordeloos
  • Milan Gryndler
  • Miroslav OborníkEmail author
Original article


A phylogenetic analysis with three molecular markers was undertaken to test the hypothesis that the complex of Psilocybe cyanescens in Europe consists of several, morphologically distinct species. The results support the existence of two molecularly well-supported morphological groups, that of Psilocybe cyanescens and P. azurescens on the one hand, and the complex of P. serbica on the other. However, in the last group, no sequence variability within the three molecular markers from P. serbica and related taxa P. bohemica, P. arcana, and P. moravica was found. It was decided, therefore, to merge these taxa into P. serbica, and to distinguish them below species level. It was also demonstrated that the secotioid Weraroa novae-zelandiae belongs to the P. cyanescens species complex. Accordingly, it was transferred to Psilocybe as P. weraroa, nomen novum.


Strophariaceae Psilocybe serbica Psilocybe cyanescens Weraroa novae-zelandiae DNA markers Phylogeny 



We are very grateful to Michal Tomšovský for valuable advice and to our colleagues who kindly provided their collections for study: anonymous donators, Jürgen Hechler, Egon Horak, Zdenko Tkalčec, and Ruben Walleyn (†). The kind assistance of curators Lenka Edrová and Jan Holec (herbarium PRM; Mycological Department, National Museum, Prague) is also greatly appreciated. This research was supported by Institutional Research Plans (IRP) AV0Z30130516 (Institute of Geology, ASCR, Prague), AV0Z10480505 (Nuclear Physics Institute, ASCR, Řež near Prague), IRP AV0Z50200510 (Institute of Microbiology, ASCR, Prague), research project of the Institute of Parasitology ASCR (Z60220518) and Ministry of Education of the Czech Republic (6007665801). An indirect support was obtained from the project IAA600480801 (The Grant Agency of the Academy of Sciences of the Czech Republic).

Supplementary material

11557_2010_684_MOESM1_ESM.xls (22 kb)
Suplementary Table S1 Sequences used in this study and downloaded from GeneBank™. (XLS 22 kb)
11557_2010_684_MOESM2_ESM.xls (28 kb)
Suplementary Table S2 Morphological, phenological and ecological characters used to construct the morphological matrix. (XLS 28 kb)


  1. Anderson C, Kristinsson J, Gry J (2008) Occurrence and use of hallucinogenic mushrooms containing psilocybin alkaloids. TemaNord 2008:606, Nordic Council of Ministers, CopenhagenGoogle Scholar
  2. Antonín V, Tomšovský M, Sedlák P, Májek T, Jankovský L (2009) Morphological and molecular characterization of the Armillaria cepistipes – A. gallica complex in the Czech Republic and Slovakia. Mycol Prog 8:259–271CrossRefGoogle Scholar
  3. Bon M, Roux P (2003) Clé analytique de la famille Strophariaceae Singer & A.H. Smith. Doc Mycol 129:3–54Google Scholar
  4. Borovička J (2003) The bluing Psilocybe species of the Czech Republic III. Psilocybe moravica sp. nova, the Moravian Psilocybe. Mykol Sborn 80:126–141Google Scholar
  5. Borovička J (2005) The bluing species of Psilocybe of the Czech Republic IV. The problem of Psilocybe cyanescens Wakef. Mykol Sborn 82:1–21Google Scholar
  6. Borovička J (2006) New variety of Psilocybe moravica and notes on Psilocybe bohemica. Czech Mycol 58:75–80Google Scholar
  7. Borovička J (2008) The wood-rotting bluing Psilocybe species in Central Europe – an identification key. Czech Mycol 60:173–192Google Scholar
  8. Borovička J, Hlaváček J (2001a) The bluing Psilocybe species of the Czech Republic I. Psilocybe arcana Borovička et Hlaváček, the mysterious Psilocybe [In Czech]. Mykol Sborn 78:2–7Google Scholar
  9. Borovička J, Hlaváček J (2001b) The bluing Psilocybe species of the Czech Republic II. Psilocybe bohemica Šebek, the Bohemian Psilocybe [In Czech]. Mykol Sborn 78:57–65Google Scholar
  10. Bridge PD, Spooner BM, Beever RE, Park DC (2008) Taxonomy of the fungus commonly known as Stropharia aurantiacea, with new combinations in Leratiomyces. Mycotaxon 103:109–121Google Scholar
  11. Courtecuisse R, Deveaux M (2004) Mycology and toxicology of hallucinogenic mushrooms in Europe and the Americas [In French]. Ann Toxicol Anal 16:36–64CrossRefGoogle Scholar
  12. Cruse M, Telerant R, Gallagher T, Taylor JW (2002) Cryptic species in Stachybotrys chartarum. Mycologia 94:814–822PubMedCrossRefGoogle Scholar
  13. Dennis RWG, Wakefield EM (1946) New or interesting British fungi. Trans Br Mycol Soc 29:141–142CrossRefGoogle Scholar
  14. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  15. Garnica S, Weiss M, Walther G, Oberwinkler F (2007) Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. Mycol Res 111:1019–1029PubMedCrossRefGoogle Scholar
  16. Geiser DM, Pitt IJ, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci USA 95:388–393PubMedCrossRefGoogle Scholar
  17. Geml J, Geiser DM, Royse DJ (2004) Molecular evolution of Agaricus species based on ITS and LSU rDNA sequences. Mycol Prog 3:157–176CrossRefGoogle Scholar
  18. Giraud T, Refrégier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genet Biol 45:791–802PubMedCrossRefGoogle Scholar
  19. Guzmán G (1983) The genus Psilocybe. Nova Hedwigia, Beiheft 74, VaduzGoogle Scholar
  20. Guzmán G (1995) Supplement to the monograph of the genus Psilocybe. In: Petrini O, Horak E (eds) Taxonomic monographs of Agaricales. Bibliotheca Mycol 159:91–141Google Scholar
  21. Guzmán G (2009) The hallucinogenic mushrooms: diversity, traditions, use and abuse with special reference to the genus Psilocybe. In: Misra JK, Desmukh SK (eds) Fungi from difference environments. Science Publishers, Enfield (NH), pp 256–277CrossRefGoogle Scholar
  22. Guzmán-Dávalos L, Mueller GM, Cifuentes J, Miller AN, Santerre A (2003) Traditional infrageneric classification of Gymnopilus is not supported by ribosomal DNA sequence data. Mycologia 95:1204–1214PubMedCrossRefGoogle Scholar
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. Heim R, Wasson RG (1958) Hallucinogenic mushrooms of Mexico [In French]. Archives Du Muséum National d'Histoire Naturelle, 7e Série, Tome VI, Éditions du Muséum, ParisGoogle Scholar
  25. Hillebrand J, Olszewski D, Sedefov R (2006) EMCDDA Thematic Papers, Hallucinogenic mushrooms: an emerging trend case study. European Monitoring Centre for Drugs and Drug Addiction, LisbonGoogle Scholar
  26. Horak E (2005) European Agarics and Boleti [In German]. Elsevier, MünchenGoogle Scholar
  27. Kauserud H, Schumacher T (2001) Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in Phellinus nigrolimitatus (Basidiomycota). Mycol Res 105:676–683CrossRefGoogle Scholar
  28. Knudsen H, Vesterholt J (eds) (2008) Funga Nordica: Agaricoid, boletoid and cyphelloid genera. CopenhagenGoogle Scholar
  29. Krieglsteiner GJ (1984) Studien zum Psilocybe cyanescens-Komplex in Europa. Beitr Kenntn Pilze Mitteleur 1:61–94Google Scholar
  30. Krieglsteiner GJ (1986) Studien zum Psilocybe cyanescens-callosa-semilanceata-Komplex in Europa. Beitr Kenntn Pilze Mitteleur 2:57–72Google Scholar
  31. Lassmann T, Sonnhammer EL (2005) Kalign – an accurate and fast multiple sequence alignment algorithm. BMC Bioinf 6:298CrossRefGoogle Scholar
  32. Ludwig E (2001) Pilzkompendium, Part 1, Descriptions [In German]. EchingGoogle Scholar
  33. Maire R (1928) Diagnoses de champignons inedits de l’Afrique du Nord. Bull Soc Mycol Fr 44:37–56Google Scholar
  34. Maruyama T, Yokoyama K, Makino Y, Goda Y (2003) Phylogenetic relationship of psychoactive fungi based on the rRNA gene for a large subunit and their eidentification using the TaqMan assay. Chem Pharm Bull 51:710–714PubMedCrossRefGoogle Scholar
  35. Maruyama T, Kawahara N, Yokoyama K, Makino Y, Fukiharu T, Goda Y (2006) Phylogenetic relationship of psychoactive fungi based on rRNA gene for a large subunit and their identification using the TaqMan assay (II). Forensic Sci Int 163:51–58PubMedCrossRefGoogle Scholar
  36. Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995PubMedCrossRefGoogle Scholar
  37. Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305PubMedCrossRefGoogle Scholar
  38. Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clémençon H, Miller OK Jr (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400PubMedCrossRefGoogle Scholar
  39. Moser M, Horak E (1968) Psilocybe serbica spec. nov., eine neue Psilocybin und Psilocin Bildende Art aus Serbien. Z Pilzk 34:37–144Google Scholar
  40. Müller T, Philippi N, Dandekar T, Schultz J, Wolf M (2007) Distinguishing species. RNA 13:1469–1472PubMedCrossRefGoogle Scholar
  41. Noordeloos ME (1999) Genus Psilocybe. In: Bas C, Kuyper TW, Noordeloos ME, Vellinga EC (eds) Flora agaricina neerlandica, vol IV. Brookfield, Rotterdam, pp 28–79Google Scholar
  42. Nugent KG, Saville BJ (2004) Forensic analysis of hallucinogenic fungi: a DNA-based approach. Forensic Sci Int 140:147–157PubMedCrossRefGoogle Scholar
  43. Oborník M, Jirků M, Doležel D (2001) Phylogeny of mitosporic entomopathogenic fungi: Is the genus Paecilomyces polyphyletic? Can J Microbiol 47:813–819PubMedCrossRefGoogle Scholar
  44. Pornpakakul S, Suwancharoen S, Petsom A, Roengsumran S, Muangsin N, Chaichit N, Piapukiew J, Sihanonth P, Allen JW (2009) A new sesquiterpenoid metabolite from Psilocybe samuiensis. J Asian Nat Prod Res 11:12–17PubMedCrossRefGoogle Scholar
  45. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  46. Redhead SA, Moncalvo JM, Vilgalys R, Matheny PB, Guzmán-Dávalos L, Guzmán G (2007) Proposal to conserve the name Psilocybe (Basidiomycota) with a conserved type. Taxon 56:255–257Google Scholar
  47. Roy BA, Vogler DR, Bruns TD, Szaro TM (1998) Cryptic species in the Puccinia monoica complex. Mycologia 90:846–853CrossRefGoogle Scholar
  48. Šebek S (1983) The Bohemian PsilocybePsilocybe bohemica [In Czech]. Czech Mycol 37:177–181Google Scholar
  49. Singer R (1973) Diagnoses Fungorum Novorum Agaricalium III. Beih Sydowia 7:1–106Google Scholar
  50. Stamets P, Gartz J (1995) A new caerulescent Psilocybe from the Pacific Coast of Northwestern America. Integration 6:21–27Google Scholar
  51. Swofford DL (1998) Phylogenetic Analysis Using Parsimony (and other methods). Version 4b10. Sinauer, Sunderland, MassGoogle Scholar
  52. Vellinga EC (2002) New combinations in Chlorophyllum. Mycotaxon 83:415–417Google Scholar
  53. Watling R, Martin MP (2003) A sequestrate Psilocybe from Scotland. Bot J Scotl 55:245–257CrossRefGoogle Scholar
  54. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols, a guide to methods and applications. Academic, San Diego, CA, pp 315–322Google Scholar

Copyright information

© German Mycological Society and Springer 2010

Authors and Affiliations

  • Jan Borovička
    • 1
    • 2
  • Machiel E. Noordeloos
    • 3
  • Milan Gryndler
    • 4
  • Miroslav Oborník
    • 5
    Email author
  1. 1.Institute of GeologyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Netherlands Centre for Biodiversity Naturalis (section NHN)Leiden UniversityLeidenThe Netherlands
  4. 4.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  5. 5.Biology Centre, Institute of ParasitologyAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic

Personalised recommendations