Mycological Progress

, Volume 10, Issue 1, pp 21–31 | Cite as

Phytophthora chrysanthemi sp. nov., a new species causing root rot of chrysanthemum in Japan

  • Meherun Naher
  • Keiichi Motohash
  • Hideki Watanabe
  • Yoshiaki Chikuo
  • Masako Senda
  • Haruhisa Suga
  • Clive Brasier
  • Koji KageyamaEmail author
Original article


A new species of Phytophthora was isolated from stem and root rot of chrysanthemum in the Gifu and Toyama prefectures of Japan. The species differs from other Phytophthora species morphologically, and is characterized by nonpapillate, noncaducous sporangia with internal proliferation, formation of both hyphal swellings and chlamydospores, homothallic nature, distinctive intercalary antheridia, and funnel-shaped oogonia. The new species can grow even at 35°C, with an optimum growth temperature of 30°C in V8 juice agar medium. In phylogenetic analyses based on five nuclear regions (LSU rDNA; genes for translation elongation factor 1α, β-tubulin, 60 S ribosomal protein L10, and heat shock protein 90), the isolates formed a monophyletic clade. Although the rDNA ITS region shows a high resolution and has proven particularly useful for the separation of Phytophthora species, it was difficult to align the sequences for phylogenetic analysis. Therefore, ITS region analysis using related species as defined by the multigene phylogeny was performed, and the topology of the resulting tree also revealed a monophyletic clade formed by the isolates of the species. The morphological characteristics and phylogenetic relationships indicate that the isolates represent a new species, Phytophthora chrysanthemi sp. nov. In pathogenicity tests, chrysanthemum plants inoculated with the isolates developed lesions on stems and roots within 3 days, and the symptoms resembled the ones originally observed. Finally, the pathogen’s identity was confirmed by re-isolation from lesions of infected plants.


High temperature Chrysanthemum Phylogeny Phytophthora Root rot 



We thank Dr. Susan A. Kirk (Forest Research Agency, Farnham), Dr. Lassaad Belbahri (Laboratory of Applied Genetics, Switzerland), Dr. Margaret Dick (New Zealand Forest Research Institute, New Zealand), Dr. Michael David Coffey (University of California Riverside, United States of America), and Dr. Reza Mostowfizadeh Ghalamfarsa (Department of Plant Protection, Siraz University, Iran) for providing isolates.

Supplementary material

11557_2010_670_MOESM1_ESM.doc (159 kb)
ESM 1 (DOC 159 kb)


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Ann PJ, Ko WH (1980) Phytophthora insolita, a new species from Taiwan. Mycologia 72:1180–1185CrossRefGoogle Scholar
  3. Beakes GW, Sekimoto S (2009) The evolutionary phylogeny of oomycetes-insights gained from studies of holocarpic parasites of algae and invertebrates. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, New York, pp 1–23‎CrossRefGoogle Scholar
  4. Belbahri L, Moralejo E, Calmin G, Oszako T, Garcia JA, Descals E, Lefort F (2006) Phytophthora polonica, a new species isolated from declining Alnus glutinosa stands in Poland. FEMS Microbiol Lett 261:165–174PubMedCrossRefGoogle Scholar
  5. Blair JE, Coffey MD, Park SY, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Gen Biol 45:266–277CrossRefGoogle Scholar
  6. Brasier CM, Beales PA, Kirk SA, Denman S, Rose J (2005) Phytophthora kernoviae sp. nov., an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in the UK. Mycol Res 109:853–859PubMedCrossRefGoogle Scholar
  7. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803CrossRefGoogle Scholar
  8. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  9. Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematic. Annu Rev Ecol Syst 22:525–564CrossRefGoogle Scholar
  10. Chikuo Y, Morikawa T, Kageyama K (2007) Addition of the Pathogen of Phytophthora Root Rot of Chrysanthemum (Chrysanthemum morifolium). Annu Phytopathol Soc Jpn 73:180Google Scholar
  11. Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Gen Biol 30:17–32CrossRefGoogle Scholar
  12. Dick MA, Dobbie K, Cooke DEL, Brasier CM (2006) Phytophthora captiosa sp. nov. and P. fallax sp. nov. causing crown dieback of Eucalyptus in New Zealand. Mycol Res 110:393–404PubMedCrossRefGoogle Scholar
  13. Donahoo R, Blomquist CL, Thomas SL, Moulton JK, Cooke DEL, Lamour KH (2006) Phytophthora foliorum sp. nov., a new species causing leaf blight of azalea. Mycol Res 110:1309–1322PubMedCrossRefGoogle Scholar
  14. Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of dipsacales based on rbcL sequences. Ann Mo Bot Gard 79:333–345CrossRefGoogle Scholar
  15. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society, St Paul, MinnesotaGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylog-enies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  17. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  18. Ivors KL, Bonants PJM, Rizzo DM, Garbelotto M (2004) AFLP and phylogenetic analyses of North American and European populations of Phytophthora ramorum. Mycol Res 108:378–392PubMedCrossRefGoogle Scholar
  19. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCrossRefGoogle Scholar
  20. Kageyama K, Senda M, Asano T, Suga H, Ishiguro K (2007) Intra-isolate heterogeneity of the ITS region of rDNA in Pythium helicoides. Mycol Res 111:416–423PubMedCrossRefGoogle Scholar
  21. Kagiwata T (1972) A Phytophthora blight of chrysanthemum caused by Phytophthora cactorum. Nougaku shuho 30:176–185 (In Japanese)Google Scholar
  22. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  23. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518PubMedCrossRefGoogle Scholar
  24. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179PubMedCrossRefGoogle Scholar
  25. Ko WH, Ann PJ (1985) Phytophthora humicola, a new species from soil of a citrus orchard in Taiwan. Mycologia 77:631–636CrossRefGoogle Scholar
  26. Kroon LPNM, Bakker FT, van den Bosch GBM, Bonants PJM, Flier WG (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet Biol 41:766–782PubMedCrossRefGoogle Scholar
  27. Lee SB, Taylor JW (1992) Phylogeny of five fungus-like Protoctistan Phytophthora species, inferred from the Internal Transcribed Spacers of Ribosomal DNA. Mol Biol Evol 9:636–653PubMedGoogle Scholar
  28. Martin FN, Tooley PW (2003a) Phylogenetic relationships among Phytophthora species inferred from sequence analysis of the mitochondrially-encoded cytochrome oxidase I and II genes. Mycologia 95:269–284PubMedCrossRefGoogle Scholar
  29. Martin FN, Tooley PW (2003b) Phylogenetic relationships of Phytophthora ramorum, P. nemorosa, and P. pseudosyringae, three species recovered from areas in California with sudden oak death. Mycol Res 107:1379–1391PubMedCrossRefGoogle Scholar
  30. Masago H, Yoshikawa M, Fukuda M, Nakanishi N (1977) Selective inhibition of Pythium spp. on a medium for direct isolation of Phytophthora spp. from soil and plants. Phytopathology 67:425–428CrossRefGoogle Scholar
  31. Matsumoto C, Kageyama K, Suga H, Hyakumachi M (2000) Intraspecific DNA polymorphisms of Pythium irregulare. Mycol Res 104:1333–1341CrossRefGoogle Scholar
  32. Mostowfizadeh-Ghalamfarsa R, Cooke DEL, Banihasemi Z (2008) Phytophthora parsiana sp. nov., a new high-temperature tolerant species. Mycol Res 112:783–794PubMedCrossRefGoogle Scholar
  33. O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds), The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233Google Scholar
  34. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  35. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  36. Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Comm Stat Theory Methods 7:13–26CrossRefGoogle Scholar
  37. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony and other methods, 4.0β10. Sinauer, SunderlandGoogle Scholar
  38. Tanabe AS (2007) Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Mol Ecol Notes 7:962–964CrossRefGoogle Scholar
  39. Tsukiboshi T, Chikuo Y, Ito Y, Matsushita Y, Kageyama K (2007) Root and stem rot of chrysanthemum caused by five Pythium species in Japan. J Gen Plant Pathol 73:293–296CrossRefGoogle Scholar
  40. Villa NO, Kageyama K, Asano T, Suga H (2006) Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and beta-tubulin sequences. Mycologia 98:410–422PubMedCrossRefGoogle Scholar
  41. Vos RA (2003) Accelerated likelihood surface exploration: the likelihood ratchet. Syst Biol 52:368–373PubMedGoogle Scholar
  42. Watanabe H, Horinouchi H, Ichihara S, Kuwabara K, Watanabe T, Kageyama K (2007) Occurrence of Phytophthora rot of chrysanthemum caused by Phytophthora sp. Annu Phytopathol Soc Jpn 73:60Google Scholar
  43. Waterhouse GM (1963) Key to the species of Phytophthora de Bary. Mycol Pap No. 92Google Scholar
  44. Waterhouse GE (1967) Key to Pythium Pringsheim. Commonw Mycol Inst Mycol Pap 109:1–15Google Scholar
  45. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocol: a guide of methods and application. Academic, California, pp 315–322Google Scholar

Copyright information

© German Mycological Society and Springer 2010

Authors and Affiliations

  • Meherun Naher
    • 1
    • 2
  • Keiichi Motohash
    • 2
  • Hideki Watanabe
    • 3
  • Yoshiaki Chikuo
    • 4
  • Masako Senda
    • 2
  • Haruhisa Suga
    • 5
  • Clive Brasier
    • 6
  • Koji Kageyama
    • 2
    Email author
  1. 1.The United Graduate School of Agricultural ScienceGifu UniversityGifuJapan
  2. 2.River Basin Research CenterGifu UniversityGifuJapan
  3. 3.Gifu Prefectural Agricultural Technology CenterMatamaruJapan
  4. 4.National Institute of Floricultural ScienceTsukubaJapan
  5. 5.Life Science Research CenterGifu UniversityGifuJapan
  6. 6.Forest Research, Alice Holt LodgeFarnhamUK

Personalised recommendations