Mycological Progress

, Volume 9, Issue 3, pp 447–457 | Cite as

A new Ophiostoma species from loblolly pine roots in the southeastern United States

  • James W. Zanzot
  • Z. Wilhelm de BeerEmail author
  • Lori G. Eckhardt
  • Michael J. Wingfield
Original article


During the course of a survey of fungi in loblolly pine (Pinus taeda) roots in Georgia, USA, a species of Ophiostoma morphologically similar to O. pluriannulatum, was isolated. Morphological characteristics and DNA sequence comparisons were used to identify the fungus. The isolates produced perithecia with unusually long necks similar to those of O. pluriannulatum but they had few or no annuli. DNA sequences for the ribosomal internal transcribed spacer regions 1 and 2 were identical to those of O. pluriannulatum. Sequence data of the β-tubulin gene region revealed the absence of intron 4 and presence of intron 5, distinguishing the isolates from O. pluriannulatum, which has intron 4 but not intron 5. Phylogenetic analyses of the β-tubulin sequences showed that the isolates from loblolly pine roots grouped together in a lineage distinct from O. multiannulatum and O. subannulatum, both of which lack intron 4 and have intron 5. The fungus is consequently described as O. sparsiannulatum sp. nov., a novel taxon in the O. pluriannulatum complex.


β-tubulin Loblolly pine Ophiostoma pluriannulatum Taxonomy 



We thank the United States Department of Defense, via Fort Benning Military Reservation for funding the research that led to the discovery of this species. We also acknowledge members of the Tree Protection Cooperative Program (TPCP) and the DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute, University of Pretoria, for financial support. Mr. Roger Menard of the USDA Forest Service-Forest Health Protection in Pineville, Louisiana, provided invaluable technical support and Dr. Hugh Glen provided the Latin diagnosis.


  1. Aghayeva DN, Wingfield MJ, De Beer ZW, Kirisits T (2004) Two new Ophiostoma species with Sporothrix anamorphs from Austria and Azerbaijan. Mycologia 96:866–878CrossRefGoogle Scholar
  2. Aoshima K (1965) Studies on wood-staining fungi of Japan. [In Japanese with English summary]. PhD thesis, University of Tokyo, TokyoGoogle Scholar
  3. Appel DN, Kurdyla T, Lewis JR (1990) Nitidulids as vectors of the oak wilt fungus and other Ceratocystis spp. in Texas. Eur J For Pathol 20:412–417. doi: 10.1111/1439-0329.ep8118807 CrossRefGoogle Scholar
  4. Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161CrossRefGoogle Scholar
  5. Chung W-H, Kim J-J, Yamaoka Y, Uzunovic A, Masuya H, Breuil C (2006) Ophiostoma breviusculum sp. nov. (Ophiostomatales, Ascomycota) is a new species in the Ophiostoma piceae complex associated with bark beetles infesting larch in Japan. Mycologia 98:801–814. doi: 10.3852/mycologia.98.5.801 CrossRefPubMedGoogle Scholar
  6. Davidson RW (1935) Fungi causing stain in logs and lumber in the Southern States, including five new species. J Agric Res 50:789–807Google Scholar
  7. Davidson RW (1958) Additional species of Ophiostomataceae from Colorado. Mycologia 50:661–670CrossRefGoogle Scholar
  8. De Beer ZW, Harrington TC, Vismer HF, Wingfield BD, Wingfield MJ (2003) Phylogeny of the Ophiostoma stenoceras—Sporothrix schenckii complex. Mycologia 95:434–441CrossRefGoogle Scholar
  9. De Hoog GS (1974) The genera Blastobotrys, Sporothrix, Calcarisporium and Calcarisporiella gen. nov. Stud Mycol 7:1–84Google Scholar
  10. DeVay JE, Davidson RW, Moller WJ (1968) New species of Ceratocystis associated with bark injuries on deciduous fruit trees. Mycologia 60:635–641CrossRefGoogle Scholar
  11. Eckhardt LG, Weber AM, Menard R, Jones JP, Hess N (2007) Insect-fungal complex associated with loblolly pine decline in Central Alabama. For Sci 53:84–92Google Scholar
  12. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  13. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedGoogle Scholar
  14. Gorton C, Kim SH, Henricot B, Webber J, Breuil C (2004) Phylogenetic analysis of the bluestain fungus Ophiostoma minus based on partial ITS rDNA and β-tubulin gene sequences. Mycol Res 108:759–765. doi: 10.1017/S0953756204000012 CrossRefPubMedGoogle Scholar
  15. Gregor MJF (1932) A study of heterothallism in Ceratostomella pluriannulata Hedgcock. Ann Mycol 30:1–9Google Scholar
  16. Griffin HD (1968) The genus Ceratocystis in Ontario. Can J Bot 46:689–718CrossRefGoogle Scholar
  17. Grobbelaar J, Aghayeva D, De Beer ZW, Bloomer P, Wingfield M, Wingfield B (2009) Delimitation of Ophiostoma quercus and its synonyms using multiple gene phylogenies. Mycol Prog 8:221–236. doi: 10.1007/s11557-009-0594-4 CrossRefGoogle Scholar
  18. Harrington TC, McNew D, Steimel J, Hofstra D, Farrell R (2001) Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch Elm Disease fungi. Mycologia 93:111–136CrossRefGoogle Scholar
  19. Hausner G, Eyjólfsdóttir GG, Reid J (2003) Three new species of Ophiostoma and notes on Cornuvesica falcata. Can J Bot 81:40–48CrossRefGoogle Scholar
  20. Hedgcock GG (1906) Studies upon some chromogenic fungi which discolor wood. Mo Bot Gard Ann Rep 17:59–114CrossRefGoogle Scholar
  21. Kamgan NG, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59Google Scholar
  22. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298. doi: 10.1093/bib/bbn013 CrossRefPubMedGoogle Scholar
  23. Livingston WH, Davidson RW (1987) Ophiostoma subannulatum, a new fungal species pathogenic to grand fir roots. Mycologia 79:144–147CrossRefGoogle Scholar
  24. Malloch DW, Blackwell M (1993) Dispersal biology of the Ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, Webber J (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. APS, St. Paul, Minn. pp 195–206Google Scholar
  25. Marmolejo JG, Butin H (1990) New conifer-inhabiting species of Ophiostoma and Ceratocystiopsis (Ascomycetes, Microascales) from Mexico. Sydowia 42:193–199Google Scholar
  26. Mathiesen-Käärik A (1953) Eine Übersicht über die gewöhnlichsten mit Borkenkäfern assoziierten Bläuepilze in Schweden und einige für Schweden neue Bläuepilze. Medd Statens Skogsforskninginst 43:1–74Google Scholar
  27. Menard R (2007) An assessment of the risk mapping system for the use of managing loblolly pine decline sites within red-cockaded woodpecker habitat. MS Thesis, Louisiana State UniversityGoogle Scholar
  28. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  29. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116. doi: 10.1006/mpev.1996.0376 CrossRefPubMedGoogle Scholar
  30. Otrosina W, Bannwart D, Roncadori R (1999) Root-infecting fungi associated with a decline of longleaf pine in the southeastern United States. Plant Soil 217:145–150. doi: 10.1023/A:1004645115446 CrossRefGoogle Scholar
  31. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  32. Romón P, Zhou X, Iturrondobeitia JC, Wingfield MJ, Goldarazena A (2007) Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Can J Microbiol 53:756–767. doi: 10.1139/W07-001 CrossRefPubMedGoogle Scholar
  33. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  34. Seifert KA (1993) Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. In: Wingfield MJ, Seifert KA, Webber J (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. APS, St. Paul, Minn., pp 141–151Google Scholar
  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 CrossRefPubMedGoogle Scholar
  36. Thwaites JM, Farrell RL, Duncan SM, Reay SD, Blanchette RA, Hadar E, Hadar Y, Harrington TC, McNew D (2005) Survey of potential sapstain fungi on Pinus radiata in New Zealand. N Z J Bot 43:653–663Google Scholar
  37. Upadhyay HP (1981) A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, AthensGoogle Scholar
  38. Verrall AF (1939) Relative importance and seasonal prevalence of wood-staining fungi in the Southern States. Phytopathology 29:1031–1051Google Scholar
  39. Verrall AF (1941) Dissemination of fungi that stain logs and lumber. J Agric Res 63:549–558Google Scholar
  40. Villarreal M, Rubio V, De Troya MT, Arenall F (2005) A new Ophiostoma species isolated from Pinus pinaster in the Iberian Peninsula. Mycotaxon 92:259–268Google Scholar
  41. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic, San Diego, pp 315–322Google Scholar
  42. Zhou XD, De Beer ZW, Wingfield BD, Wingfield MJ (2002) Infection sequence and pathogenicity of Ophiostoma ips, Leptographium serpens and L. lundbergii to pines in South Africa. Fungal Divers 10:229–240Google Scholar
  43. Zhou XD, De Beer ZW, Ahumada R, Wingfield BD, Wingfield MJ (2004a) Ophiostoma and Ceratocystiopsis spp. associated with two pine-infesting bark beetles in Chile. Fungal Divers 15:261–274Google Scholar
  44. Zhou XD, De Beer ZW, Cibrian D, Wingfield BD, Wingfield MJ (2004b) Characterisation of Ophiostoma species associated with pine bark beetles from Mexico, including O. pulvinisporum sp. nov. Mycol Res 108:690–698. doi: 10.1017/S0953756204009918 CrossRefPubMedGoogle Scholar
  45. Zhou XD, De Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277CrossRefPubMedGoogle Scholar
  46. Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97CrossRefPubMedGoogle Scholar

Copyright information

© German Mycological Society and Springer 2010

Authors and Affiliations

  • James W. Zanzot
    • 1
  • Z. Wilhelm de Beer
    • 2
    Email author
  • Lori G. Eckhardt
    • 1
  • Michael J. Wingfield
    • 2
  1. 1.Forest Health Dynamics Laboratory, School of Forestry and Wildlife SciencesAuburn UniversityAlabamaUSA
  2. 2.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations