Mycological Progress

, Volume 9, Issue 1, pp 1–15 | Cite as

Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic

  • Martina HujslováEmail author
  • Alena Kubátová
  • Milada Chudíčková
  • Miroslav Kolařík
Original Article


During 2003–2005, the diversity of culturable filamentous soil microfungi in saline and acidic soils of the Soos National Natural Reserve (Czech Republic) was studied. Altogether, 28 soil samples were collected from four sampling sites and were processed by various approaches. In total, 92 fungal taxa were identified using classical and molecular markers. Several detected species were known from similar substrata worldwide; however, the overall fungal spectrum was distinct, as shown by comparison to similar studies. All methodological approaches increased the observed fungal diversity. The different fungal communities observed on the four sampling sites were influenced by the complex effects of environmental factors. The growth response of selected strains to different salinities and pH values was determined. The results of the growth tests showed high adaptability of all tested species to the extreme conditions of the studied substrate. Two acidophilic species (Acidomyces acidophilus, Sporothrix sp.) were isolated.


Microscopic fungi Penicillium Acidomyces Molecular identification Acidotolerance Halotolerance 



This work was supported by the Grant Agency of the Charles University (project No. 43-203345) and by the institutional project MSM 0021620828 of the Ministry of Education. We thank K. Brož and the Soos National Natural Reserve service for the facilitation of the sampling and for providing information; P. Škaloud for helpful comments on the statistical analysis; O. Rauch, A. Nováková and M. Albrechtová for the stimulating discussion; K. Prášil and M. Váňová for assistance in the determination of the fungi; and O. Koukol for reviewing the text.

Supplementary material

11557_2009_611_MOESM1_ESM.pdf (58 kb)
Electronic supplementary material Table 5 The list of the isolated species with frequencies of their occurrence at an individual site and in a single sample (PDF 58 kb)


  1. Amaral Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137CrossRefPubMedGoogle Scholar
  2. Anastasiou CJ (1963) Fungi from salt lakes II. Ascomycetes and fungi imperfecti from the Salton sea. Nova Hedwigia 6:243–276Google Scholar
  3. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. Fems Microbiol Ecol 44:139–152CrossRefPubMedGoogle Scholar
  4. Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271CrossRefPubMedGoogle Scholar
  5. Bills GM, Christensen M, Powell M, Thorn G (2004) Saprobic soil fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier/Academic, London, pp 271–302Google Scholar
  6. Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  7. Brož K (1998) Vývoj ochrany Národní přírodní rezervace Soos. In: Lederer F, Chocholoušková Z (eds) Flora a vegetace minerálních pramenů a rašelinišť NPR Soos, Plzeň, pp 1–2Google Scholar
  8. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465CrossRefGoogle Scholar
  9. Buchalo AS, Nevo E, Wasser SP, Volz PA (2000) Newly discovered halophilic fungi in the Dead Sea (Israel). In: Seckbach J (ed) Journey to diverse microbial worlds. Kluwer, Dordrecht, pp 239–252Google Scholar
  10. Campbell J, Volkmann-Kohlmeyer B, Grafenhan T, Kohlmeyer J (2005) A re-evaluation of Lulworthiales: relationships based on 18 S and 28 S rDNA. Mycol Res 109:556–568CrossRefPubMedGoogle Scholar
  11. Cantrell SA, Casillas-Martínez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970CrossRefPubMedGoogle Scholar
  12. Cavicchioli R, Torsten T (2000) Extremophiles. In: Lederberg J (ed) Encyclopedia of microbiology, San Diego, pp 317–337Google Scholar
  13. Chocholoušková Z, Vaněčková I (1998) Flóra a vegetace cévnatých rostlin NPR Soos a vybraných lokalit Slavkovského lesa. (Flora and vegetation of vascular plants in National Natural Reserve Soos) In: Lederer F, Chocholoušková Z (eds) Flora a vegetace minerálních pramenů a rašelinišť NPR Soos, Plzeň, pp 68–107Google Scholar
  14. Colwell RK (2006) ESTIMATES, Version 8.0: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware for Windows and Mac OS.
  15. Collado J, Platas G, Paulus B, Bills GF (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. Fems Microbiol Ecol 60:521–533CrossRefPubMedGoogle Scholar
  16. Cooke WB (1976) Fungi in and near streams carrying acid mine-drainage. Ohio J Sci 76:231–240Google Scholar
  17. Fassatiová O (1986) Moulds and filamentous fungi in technical microbiology. Elsevier, New YorkGoogle Scholar
  18. Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with < 5% soil moisture. Soil Biol Biochem 38:3107–3119CrossRefGoogle Scholar
  19. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066CrossRefPubMedGoogle Scholar
  20. Gadd GM (ed) (2001) Fungi in bioremediation. Cambridge University PressGoogle Scholar
  21. Gams W (1992) The analysis of communities of saprophytic microfungi with special reference to soil fungi. In: Winterhoff W (ed) Fungi in vegetation science. Kluwer, Amsterdam, pp 183–223Google Scholar
  22. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  23. Glass NL, Donaldson G (1995) Development of primer sets designed for use with the PCR to amplify conserved from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedGoogle Scholar
  24. Grishkan I, Nevo E, Wasser SP (2003) Soil micromycete diversity in the hypersaline Dead Sea coastal area, Israel. Mycol Prog 2:19–28CrossRefGoogle Scholar
  25. Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the Dead Sea. II - Deuteromycetes (except Aspergillus and Penicillium). Syst Appl Microbiol 18:318–322Google Scholar
  26. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts. Fems Microbiol Ecol 32:235–240Google Scholar
  27. Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi. Their role in human life. Science Publishers, New Hampshire, pp 69–127Google Scholar
  28. Hájek M, Vízdal P (1998) Prostorová hydrologická struktura NPR Soos. (Spatial hydrological structure of National Natural Reserve Soos) In: Lederer F, Chocholoušková Z (eds) Flora a vegetace minerálních pramenů a rašelinišť NPR Soos, Plzeň, pp 3–13Google Scholar
  29. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4Google Scholar
  30. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  31. Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18Google Scholar
  32. Hendrarto BI, Dickinson HC (1984) Soil and root micro-organisms in four salt marsh communities. Trans Br Mycol Soc 83:615–620CrossRefGoogle Scholar
  33. Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, SGd H (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Ant van Leeuw 86:287–294CrossRefGoogle Scholar
  34. Hulcr J, Kolařík M, Kirkendal LR (2007) A new record of fungus-beetle symbiosis in Scolytodes bark beetles (Scolytinae, Curculionidae, Coleoptera). Symbiosis 43Google Scholar
  35. Joseph JM (1953) Microbiological study of acid mine waters: preliminary report. Ohio J Sci 53:123–127Google Scholar
  36. Kolařík M, Kubátová A, Pažoutová S, Šrůtka P (2004) Morphological and molecular characterization of Geosmithia putterillii, G. pallida comb. nov. and G. flava sp. nov., associated with subcorticolous insects. Mycol Res 108:1053–1069CrossRefPubMedGoogle Scholar
  37. Kubátová A, Prášil K, Váňová M (2002) Diversity of soil microscopic fungi on abandoned industrial deposits. Cryptogam, Mycol 23:205–219Google Scholar
  38. Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941CrossRefPubMedGoogle Scholar
  39. López-Archilla AI, Amils R (1999) A comparative ecological study of two acidic rivers in southwestern Spain. Microb Ecol 38:146–156CrossRefPubMedGoogle Scholar
  40. López-Archilla AI, González AE, Terrón MC, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934CrossRefPubMedGoogle Scholar
  41. Magan N (1997) Fungi in extreme environments. In: Wicklow DT, Soderstrom BE (eds) Environmental and microbial relationships. The Mycota IV. Springer, Berlin, pp 99–113Google Scholar
  42. Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Satar MA (1990) Halophilic and halotolerant fungi in cultivated dessert and salt marsh soils from Egypt. Acta Mycol 26:65–81Google Scholar
  43. O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic, and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–236Google Scholar
  44. Pugh GJF (1962) Studies on fungi in coastal soils II. Fungal ecology in developing salt marsh. Trans Br Mycol Soc 45:560–566CrossRefGoogle Scholar
  45. Redman RS, Litvintseva A, Sheehan KB, Henson JM, Rodriguez RJ (1999) Fungi from geothermal soils in Yellowstone National Park. Appl Environ Microbiol 65:5193–5197PubMedGoogle Scholar
  46. Satake K, Saijo Y (1974) Carbon dioxide content and metabolic activity of microorganisms in some acid lakes in Japan. Limnol Oceanogr 19:331–338Google Scholar
  47. Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111CrossRefGoogle Scholar
  48. Selbmann L, GSd H, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedCrossRefGoogle Scholar
  49. Starkey RL, Waksman SA (1943) Fungi tolerant to extreme acidity and high concentrations of copper sulfate. J Bacteriol 45:509–519PubMedGoogle Scholar
  50. Steiman R, Guiraud P, Sage L, Seigle-Murandi F, Lafond J-L (1995) Mycoflora of soil around the Dead Sea. I - Ascomycetes (including Aspergillus and Penicillium), Basidiomycetes, Zygomycetes. Syst Appl Microbiol 18:310–317Google Scholar
  51. Steiman R, Ford L, Ducros V, Lafond J, Guiraud P (2004) First survey of fungi in hypersaline soil and water of Mono Lake area (California). Ant van Leeuw 85:69–83CrossRefGoogle Scholar
  52. Stierle AA, Stierle DB, Kelly K (2006) Berkelic Acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71:5357–5360CrossRefPubMedGoogle Scholar
  53. Stolk AM, Samson RA (1972) The genus Talaromyces. Stud Mycol 2:1–65Google Scholar
  54. Suryanarayanan TS, Hawksworth DL (2005) Fungi from little-explored and extreme habitats. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi. Their role in human life. Science Publishers, New Hampshire, pp 33–48Google Scholar
  55. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  56. Ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows. Ithaca, USAGoogle Scholar
  57. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A guide to methods and applications, New York, pp. 315–322Google Scholar
  58. Zak JC, Wildman HG (2004) Fungi in stressful environments. In: Mueller GM, Bills GF, Foster MS (ed) Biodiversity of fungi, inventory and monitoring methods. Elsevier/Academic, London, pp. 303–315Google Scholar
  59. Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Ecology of halotolerant dothideous black yeasts. Stud Mycol 43:38–48Google Scholar

Copyright information

© German Mycological Society and Springer 2009

Authors and Affiliations

  • Martina Hujslová
    • 1
    Email author
  • Alena Kubátová
    • 1
  • Milada Chudíčková
    • 2
  • Miroslav Kolařík
    • 1
    • 2
  1. 1.Department of Botany, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Institute of Microbiology CASPraha 4Czech Republic

Personalised recommendations