Mycological Progress

, Volume 7, Issue 1, pp 41–47 | Cite as

Molecular phylogenetic analysis shows that Amanita ponderosa and A. curtipes are distinct species

  • Gabriel Moreno
  • Gonzalo Platas
  • Fernando Peláez
  • Marieta Bernedo
  • Alba Vargas
  • Antonio Daza
  • Carmen Santamaría
  • María Camacho
  • Luis Romero de la Osa
  • José Luis Manjón
Original Article

Abstract

Amanita curtipes and A. ponderosa are two Mediterranean taxa sharing a number of morphological features as well as their habitat. Their synonymy or variety status has been proposed by several authors. To clarify this taxonomic issue we have sequenced the D1-D2 domains of the 28S rRNA gene as well as the complete ITS1-5.8S-ITS2 region of several specimens of the two species collected in Spain, and aligned these sequences with those from other Amanita species. Molecular phylogenetic analysis based on the two regions revealed that A. ponderosa and A. curtipes are clearly distinct species. The distribution of Amanita species in the phylogenetic trees was consistent with the division of the genus in subgenera and sections as proposed by previous authors. Sequences of A. ponderosa and A. curtipes were grouped in a monophyletic cluster together with other species of the section Amidella. However, A. ponderosa was closer to other species in the section, such as A. peckiana and A. volvata, than to A. curtipes. We also indicate the macromorphological characters that are most useful to reliably distinguish A. ponderosa and A. curtipes.

Keywords

Section Amidella Macromorphological characters 28S rRNA gene Phylogenetic trees 

References

  1. Bas C (1969) Morphology and subdivision of Amanita and a monograph on its section Lepidella. Persoonia 5:285–579Google Scholar
  2. Bridge PD, Roberts PJ, Spooner BM, Panchal G (2003) On the unreliability of published DNA sequences. New Phytol 160:43–48CrossRefGoogle Scholar
  3. Castro ML (1997) Analyse critique des taxons appartenant au groupe Amanita curtipes Gilbert (Agaricales, Basidiomycotina). Distribution dans la Peninsule Iberique. Doc Mycol 27:43–51Google Scholar
  4. Courtecuisse R, Duhem B (1994) Guide des champignons de France et d’Europe. Delachaux et Niestlé, LausanneGoogle Scholar
  5. Daza A, Romero L, Santamaría C, Camacho M, Aguilar A, Megías M, Moreno G, Pérez M, Manjón JL (2002) El gurumelo, una seta de primavera. Quercus 193:20–24Google Scholar
  6. Daza A, Moreno G, Santamaría C, Romero de la Osa L, Bernedo M, Manjón JL (2003) Amanita ponderosa “Gurumelo”, un hongo a estudiar por su interés gastronómico-silvícola en Andalucía (Sierra de Aracena), provincia de Huelva. Bol Soc Micol Madr 27:91–99Google Scholar
  7. Drehmel D, Moncalvo JM, Vilgalys R (1999) Molecular phylogeny of Amanita based on large-subunit ribosomal DNA sequences: implications for taxonomy and character evolution. Mycologia 91:610–618CrossRefGoogle Scholar
  8. Gardes M, Bruns TD (1993) ITS primers with enhanced specifity for basidiomycetes. Aplication to the identification of mycorrhizae and rust. Mol Ecol 2:113–118PubMedGoogle Scholar
  9. González V, Arenal F, Platas G, Esteve-Raventós F, Peláez F (2002) Molecular typing of Spanish species of Amanita by restriction analysis of the ITS region of the DNA. Mycol Res 106:903–910CrossRefGoogle Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. Hopple JS Jr, Vilgalys R (1994) Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:96–107CrossRefGoogle Scholar
  12. Konrad P, Maublanc A (1948) Les Agaricales vol 1. Encycl Mycol 14:1–464Google Scholar
  13. Kühner R, Romagnesi H (1953) Flore analitique des champignons superieurs. Masson, ParisGoogle Scholar
  14. Lim YW, Jung HS (1998) Phylogenetic relationships of Amanita species based on ITS1-5.8S rDNA-ITS2 region sequences. J Microbiol 36:203–207Google Scholar
  15. Malençon G, Heim R (1942) Notes critiques sur quelques hymènomycetes d’Europe et d’Afrique du Nord I. Les amanites blanches meridionales. Bull Soc Mycol Fr 58:14–34Google Scholar
  16. Mesplède VH (1980) Revision des Amanites. Bull Soc Mycol Bearn, num spec 50Google Scholar
  17. Moncalvo JM, Drehmel D, Vilgalys R (2000) Variation in modes and rates of evolution in nuclear and mitochondrial ribosomal DNA in the mushroom genus Amanita (Agaricales, Basidiomycota): phylogenetic implications. Mol Phylogenet Evol 16:48–63PubMedCrossRefGoogle Scholar
  18. Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clémençon H, Miller OK Jr (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400PubMedCrossRefGoogle Scholar
  19. Moreno G, Esteve-Raventós F (1988) Estudios micológicos en el Parque Natural de Monfragüe (Extremadura, España), I. Agaricales. Bol Soc Micol Madr 12:67–83Google Scholar
  20. Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) GeneDoc: Analysis and Visualization of Genetic Variation. EMBNEW NEWS 4:14Google Scholar
  21. Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  22. Oda T, Tanaka C, Tsuda M (1999) Molecular phylogeny of Japanese Amanita species based on nucleotide sequences of the internal transcribed spacer region of nuclear ribosomal DNA. Mycoscience 40:57–64CrossRefGoogle Scholar
  23. O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds). The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB international, Wallingford, U.K., pp. 225–233Google Scholar
  24. Peláez F, Platas G, Collado J, Díez MT (1996) Infraspecific variation in two species of aquatic hyphomycetes, assessed by RAPD analysis. Mycol Res 100:831–837CrossRefGoogle Scholar
  25. Pinho-Almeida F (1994) Estudos taxonómicos no género Amanita. Secçao Amidella- Complexo Lepiotoides: A. curtipes Gilbert, A. lepiotoides Barla e A. ponderosa Malençon & Heim. Rev Biol (Lisboa) 15:131–151Google Scholar
  26. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  27. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  28. Singer R (1986) The agaricales in modern taxonomy, 4th ed. Koeltz Scientific Books, Koenigstein, Germany, p 981Google Scholar
  29. Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (and other methods). Version 4.0b10. Sinauer, Sunderland, Mass.Google Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  31. Weiß M, Yang ZL, Oberwinkler F (1998) Molecular phylogenetic studies in the genus Amanita. Can J Bot 76:1170–1179CrossRefGoogle Scholar
  32. Yang ZL (1997) Die Amanita-Arten von Suedwestchina. Bibl Mycol 170:1–240Google Scholar
  33. Zhang LF, Yang JB, Yang ZL (2004) Molecular phylogeny of eastern Asia species of Amanita (Agaricales, Basidiomycota): taxonomic and biogeographic implications. Fungal Divers 17:219–238Google Scholar

Copyright information

© German Mycological Society and Springer 2007

Authors and Affiliations

  • Gabriel Moreno
    • 1
  • Gonzalo Platas
    • 2
  • Fernando Peláez
    • 2
  • Marieta Bernedo
    • 1
  • Alba Vargas
    • 1
  • Antonio Daza
    • 3
  • Carmen Santamaría
    • 3
  • María Camacho
    • 3
  • Luis Romero de la Osa
    • 3
  • José Luis Manjón
    • 1
  1. 1.Departamento de Biología VegetalUniversidad de AlcaláMadridSpain
  2. 2.Centro de Investigación Básica de EspañaMerck, Sharp & Dohme de España S.A.MadridSpain
  3. 3.IFAPA Centro “Las Torres-Tomejil”Alcalá del Río (Sevilla)Spain

Personalised recommendations