Mycological Progress

, 6:261 | Cite as

Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control

  • Olaf Schmidt
Original Article


Indoor wood-decay fungi cause considerable economical damage. Most of the structural damage to the indoors of buildings in Europe and North America is caused by brown-rot fungi that degrade conifer wood; white-rot fungi, which preferentially attack hardwoods, are less common. This review covers the approximately 80 basidiomycetes that commonly occur in buildings. Emphasis was placed on Serpula lacrymans, which is the most common indoor basidiomycete in central Europe. Meruliporia incrassata, the North American pendant to S. lacrymans, has also received considerable attention. In terms of indoor wood decay, moisture and temperature are the most important influences. Wood samples with a low moisture content can be degraded. High temperatures as an alternative control measure do not kill mycelia, with some species surviving in wood samples in the form of heat-resistant arthrospores at temperatures as high 95°C. For refurbishment and scientific purposes, the identity of the causal species should be known. More recently, several molecular techniques have been used to identify fungi; these results are often conflicting with those obtained by other, earlier applied methods. Sequencing of the internal transcribed spacers (ITS) of the rDNA is currently the best molecular tool. Among the other methods available, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) has also been shown to be able to distinguish closely related sister taxa. For further characterization of indoor basidiomycetes, the complete sequences of the 18S, 28S rDNA and the intergenic spacers with the included 5S rDNA have been acquired for some species. If current projects involving whole funal genome sequencing are not taken into account, Antrodia vaillantii is the first basidiomycete for which the complete rDNA sequence has been deposited. The review closes with fundamentals on the prevention and control of indoor wood decay.


Timber Internal Transcribe Spacer Amplify Fragment Length Polymorphism Fruit Body Fibre Saturation Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adair S, Kim SH, Breuil C (2002) A molecular approach for early monitoring of decay basidiomycetes in wood chips. FEMS Microbiol Lett 211:117–122PubMedGoogle Scholar
  2. Agerer R, Iosifidou P (2004) Rhizomorph structures of Hymenomycetes: a possibility to test DNA-based phylogenetic hypotheses? In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW, Eching, pp 249–302Google Scholar
  3. Alfredsen G, Solheim H, Jenssen KM (2005) Evaluation of decay fungi in Norwegian buildings. In: Int Res Group Wood Protection 36th Ann Conf. IRG/WP/10562:1–12Google Scholar
  4. Anagnost SE (1998) Light microscopic diagnosis of wood decay. IAWA J 19:141–167Google Scholar
  5. Bao D, Ishihara H, Mori N, Kitamoto Y (2004) Phylogenetic analysis of oyster mushrooms (Pleurotus spp.) based on restriction fragment length polymorphisms of the 5′ portion of 26S rDNA. J Wood Sci 50:169–176Google Scholar
  6. Bavendamm W (1952) Lentinus lepideus (Buxb.) Fr. Holz Roh-Werkstoff 10:337–338Google Scholar
  7. Bavendamm W (1953) Paxillus panuoides Fr. Holz Roh-Werkstoff 11:331–332Google Scholar
  8. Bech-Andersen J (1985) Alkaline building materials and controlled moisture conditions as causes for dry rot Serpula lacrymans growing only in houses. International Research Group on Wood Preservation Document, Secretariat, Stockholm, IRG/WP/1272:1–5Google Scholar
  9. Bech-Andersen J (1995) The dry rot fungus and other fungi in houses. Hussvamp Laboratoriet Forlag, Gl. Holte, DenmarkGoogle Scholar
  10. Bech-Andersen J, Andersen C (1992) Theoretical and practical experiments with eradication of the dry rot fungus by means of microwaves. International Research Group on Wood Preservation Document, Secretariat, Stockholm, IRG/WP/1577:1–4Google Scholar
  11. Benko R, Highley TL (1990) Selection of media for screening interaction of wood-attacking fungi and antagonistic bacteria. II. Interaction on wood. Mater Org 25:174–180Google Scholar
  12. Blanz PA, Gottschalk M (1986) Systematic position of Septobasidium, Graphiola and other basidiomycetes as deduced on the basis of their 5S ribosomal RNA nucleotide sequence. Syst Appl Microbiol 8:121–127Google Scholar
  13. Blei M, Fiedler K, Rüden H, Schleibinger HW (2005) Differenzierung von Holz zerstörenden Pilzen mittels ihrer mikrobiellen flüchtigen organischen Verbindungen (MVOC). In: Keller R, Senkpiel K, Samson RA, Hoekstra (eds) Mikrobielle allergische und toxische Verbindungen. Schriftenr Inst Medizin Mikrobiol Hygiene Univ Lübeck 9, pp 163–178Google Scholar
  14. Blow DP (1987) The biodeterioration of in-service timber in buildings. In: The biodeterioration of constructional materials. Biodetection Society, Kew, pp 115–127Google Scholar
  15. Bravery AF, Berry RW, Carey JK, Cooper DE (2003) Recognising wood rot and insect damage in buildings, 2nd edn. Building Research Establishment, WatfordGoogle Scholar
  16. Breitenbach J, Kränzlin F (1986) Pilze der Schweiz, vol 2. Nichtblätterpilze. Mykologia, LucerneGoogle Scholar
  17. Bresinsky A, Jarosch M, Fischer M, Schönberger I, Wittmann-Bresinsky B (1999) Phylogenetic relationships within Paxillus s.l. (Basidiomycetes, Boletales): separation of a southern hemisphere genus. Plant Biol 1:327–333Google Scholar
  18. Bricknell JM (1991) Surveying to determine the presence and extent of an attack of dry rot within buildings in the United Kingdom. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 95–115Google Scholar
  19. Bruce A (1998) Biological control of wood decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor & Francis, London BristolGoogle Scholar
  20. Bruce A (2000) Role of VOCs and other antagonistic mechanisms in the biological control of wood deterioration fungi by Trichoderma spp. and other antagonists. In: Ochrona Drewna 20th Symp. Polska Akad Nauk, Drewna, pp 17–25Google Scholar
  21. Burdsall HH (1991) Meruliporia (Poria) incrassata: Occurrence and significance in the United States as a dry rot fungus. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 189–191Google Scholar
  22. Cartwright KStG, Findlay WPH (1958) Decay of timber and its prevention, 2nd edn. His Majesty’s Stationery Office, LondonGoogle Scholar
  23. Chillali M, Wipf D, Guillaumin J-J, Mohammed C, Botton B (1998) Delineation of the European Armillaria species based on the sequences of the internal transcribed spacer (ITS) of ribosomal DNA. New Phytol 138:553–561Google Scholar
  24. Clarke RW, Jennings DH, Coggins RW (1980) Growth of Serpula lacrymans in relation to water potential of substrate. Trans Br Mycol Soc 75:271–280Google Scholar
  25. Clausen C (1997) Immunological detection of wood decay fungi- an overview of techniques developed from 1986 to present. Int Biodeter Biodegrad 39:133–143Google Scholar
  26. Clausen CA, Kartal SN (2003) Accelerated detection of brown-rot decay: comparison of soil block test, chemical analysis, mechanical properties, and immunodetection. Forest Prod J 53:90–94Google Scholar
  27. Cockcroft R (ed) (1981) Some wood-destroying basidiomycetes, vol 1. International Research Group on Wood Preservation, Boroko, Papua New Guinea, pp 1–186Google Scholar
  28. Coetzee MPA, Wingfield BD, Bloomer P, Wingfield MJ (2005) Phylogenetic analyses of DNA sequences reveal species partitions amongst isolates of Armillaria from Africa. Mycol Res 109:1223–1234PubMedGoogle Scholar
  29. Coggins CR (1980) Decay of timber in buildings. Dry rot, wet rot and other fungi. Rentokil, East GrinsteadGoogle Scholar
  30. Collett O (1992) Comparative tolerance of the brown-rot fungus Antrodia vaillantii (DC.:Fr.) Ryv. isolates to copper. Holzforschung 46:293–298Google Scholar
  31. Da Costa EWB, Kerruish RM (1964) Tolerance of Poria species to copper-based wood preservatives. For Prod J 14:106–112Google Scholar
  32. Diaz MR, Boekhout T, Kiesling T, Fell JW (2005) Comparative analysis of the intergenic spacer regions and population structure of the species complex of the pathogenic yeast Cryptococcus neoformans. FEMS Yeast Res 5:1129–1140PubMedGoogle Scholar
  33. Diehl SV, Prewitt ML, Moore Shmulsky F (2003) Use of fatty acid profiles to identify white-rot wood decay fungi. In: Goodell B, Nicholas DB, Schultz TP (eds) Wood deterioration and preservation. ACS Symp Ser 845. Am Chem Soc, Washington D.C., pp 313–324Google Scholar
  34. Diehl SV, McElroy TC, Prewitt ML (2004) Development and implementation of a DNA-RFLP database for wood decay and wood associated fungi. International Research Group on Wood Preservation Document IRG/WP/10527:1–8Google Scholar
  35. DIN [Deutsches Institut für Normung (German National Standards Organization)] 68 800, Part 4 (1992) Wood preservation; control measures against wood-destroying fungi and insects. Beuth, BerlinGoogle Scholar
  36. Dirol D, Vergnaud J-M (1992) Water transfer in wood in relation to fungal attack in buildings-effect of condensation and diffusion. International Research Group on Wood Preservation Document IRG/WP/1543:1–17Google Scholar
  37. Doi S (1991) Serpula lacrymans in Japan. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 173–187Google Scholar
  38. Doi S, Yamada A (1991) Antagonistic effect of Trichoderma spp. against Serpula lacrymans in the soil treatment test. J Hokkaido For Prod Res Inst 6:1–5Google Scholar
  39. Dreger I (2006) Thermal treatment with infrared-radiation – an effective control measure against biotic wood-destroyers? In: Int Conf “Wood-Destroying Organisms in Focus-Alternative Measures for Preservation of Historic Buildings”. Detmold, Germany, pp 52–53Google Scholar
  40. Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. Chapman & Hall, LondonGoogle Scholar
  41. Eikenes M, Hietala A, Alfredsen G, Fossdal CG, Solheim H (2005) Comparison of quantitative real-time PCR, chitin and ergosterol assays for monitoring colonization of Trametes versicolor in birch wood. Holzforschung 59:568–573Google Scholar
  42. Elliott ML, Watkinson S (1989) The effect of α-aminoisobutyric acid on wood decay and wood spoilage fungi. Int Biodetect 25:355–371Google Scholar
  43. EN (European Standards)113 (1996) Determination of toxic values of wood preservatives against wood destroying basidiomycetes cultured on agar medium. European Committee Standardization, BrusselsGoogle Scholar
  44. Falck R (1909) Die Lenzites-Fäule des Coniferenholzes. Hausschwammforsch 3:1–234Google Scholar
  45. Falck R (1912) Die Meruliusfäule des Bauholzes. Hausschwammforsch 6:1–405Google Scholar
  46. Falck R (1927) Gutachten über Schwammfragen. Hausschwammforsch 9:12–64Google Scholar
  47. Fan M, Chen L-C, Ragan MA, Gutell RR, Warner JR, Currie BP, Casadevall A (1995) The 5S rRNA and the rRNA intergenic spacer of the two varieties of Cryptococcus neoformans. J Med Vet Mcol 33:215–221Google Scholar
  48. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171PubMedGoogle Scholar
  49. Fischer M, Wagner T (1999) RFLP analysis as a tool for identification of lignicolous basidiomycetes: European polypores. Eur J For Pathol 29:295–304Google Scholar
  50. Garbelotto M, Ratcliff A, Bruns TD, Cobb FW, Otrosina WJ (1996) Use of taxon-specific competitive-priming PCR to study host specifity, hybridization, and intergroup gene flow in intersterility groups of Heterobasidion annosum. Phytopathology 86:543–551Google Scholar
  51. Gilbertson RL, Ryvarden L (1987) North American polypores, vol 2. Fungiflora, OsloGoogle Scholar
  52. Ginns J (1978) Leucogyrophana (Aphyllophorales): identification of species. Can J Bot 56:1953–1973Google Scholar
  53. Ginns J (1982) A monograph of the genus Coniophora (Aphyllophorales, Basidiomycetes). Opera Bot 61:1–61Google Scholar
  54. Giron MY, Morrell JJ (1989) Interactions between microfungi: isolated from fumigant-treated Douglas-fir heartwood and Poria placenta and Poria carbonica. Mater Org 24:39–49Google Scholar
  55. Göller K, Rudolph D (2003) The need for unequivocally defined reference fungi-genomic variation in two strains named as Coniophora puteana BAM Ebw. 15. Holzforschung 57:456–458Google Scholar
  56. Goodell B, Nicholas DD, Schulz TP (eds) (2003) Wood deterioration and preservation. Advances in our changing world. ACS Symp Ser 845. Am Chem Soc, Washington D.C.Google Scholar
  57. Green F, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeter Biodegrad 51:145–149Google Scholar
  58. Griffin DM (1977) Water potential and wood-decay fungi. Annu Rev Phytopath ol15:319–329Google Scholar
  59. Grosser D (1985) Pflanzliche und tierische Bau-und Werkholzschädlinge. DRW Weinbrenner, Leinfelden-EchterdingenGoogle Scholar
  60. Gründlinger R (1997) Der echte Hausschwamm-Serpula lacrymans (Schumacher ex Fries) SF Gray. Holzforsch Holzverwert 6:115–120Google Scholar
  61. Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K (2002) Identification of prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1 spacer characterization. Mycol Res 106:435–443Google Scholar
  62. Guillitte O (1992) Epidémiologie des attaques. In: La mérule et autres champignons nuisable dans les bâtiments. Jardin Bot Nat Belg, Domaine Bouchout, pp 34–42Google Scholar
  63. Hahn C, Agerer R (1999) Studien zur Systematik der Paxillaceae (Boletales, Basidiomycota). Sendtnera 6:115–133Google Scholar
  64. Harmsen L (1953) Merulius tignicola Harmsen, eine neue Hausschwamm-Art in Dänemark. Holz Roh-Werkstoff 11:68–69Google Scholar
  65. Harmsen L (1978) Draft of a monographic card for Serpula himantioides (Fr.) Karst. International Research Group on Wood Preservation Document, IRG/WP/174:1–8Google Scholar
  66. Harmsen L, Bakshi BK, Choudhury TG (1958) Relationship between Merulius lacrymans and M. himantioides. Nature 4614:1011Google Scholar
  67. Hastrup ACS, Green F, Clausen CA, Jensen B (2005) Tolerance of Serpula lacrymans to copper-based wood preservatives. Int Biodeter Biodegrad 56:173–177Google Scholar
  68. Hietala A, Eikenes M, Kvaalen H, Solheim H, Fossdal C (2003) Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Appl Environ Microbiol 69:4413–4420PubMedGoogle Scholar
  69. Highley TL, Ricard J (1988) Antagonism of Trichoderma spp. and Gliocladium virens against wood decay fungi. Mater Org 23:157–169Google Scholar
  70. Högberg N, Land CJ (2004) Identification of Serpula lacrymans and other decay fungi in construction timber by sequencing of ribosomal DNA – a practical approach. Holzforschung 58:199–204Google Scholar
  71. Högberg N, Svegården IB, Kauserud H (2006) Isolation and characterization of fifteen polymorphic microsatellite markers for the devasting dry rot fungus Serpula lacrymans. Mol Ecol Notes 6:1022–1024Google Scholar
  72. Horisawa S, Sakuma Y, Takata K, Doi S (2004) Detection of intra- and interspecific variation of the dry rot fungus Serpula lacrymans by PCR-RFLP and RAPD analysis. J Wood Sci 50:427–432Google Scholar
  73. Huckfeldt T (2002) Hausfäulepilze.
  74. Huckfeldt T, Schmidt O (2006a) Hausfäule-und Bauholzpilze. Rudolf Müller, CologneGoogle Scholar
  75. Huckfeldt T, Schmidt O (2006b) Identification key for European strand-forming house-rot fungi. Mycologist 20:42–56Google Scholar
  76. Huckfeldt T, Kleist G, Quader H (2000) Vitalitätsansprache des Hausschwammes (Serpula lacrymans) und anderer holzzerstörender Pilze. Z Mykol 66:35–44Google Scholar
  77. Humar M, Petriè M, Pohleven F (2001) Changes of the pH value of impregnated wood during exposure to wood-rotting fungi. Holz Roh-Werkstoff 59:288–293Google Scholar
  78. Hwang S-K, Kim J-K (1995) Nucleotide sequence analysis of the 5S ribosomal RNA gene of the mushroom Tricholoma matsutake. J Microbiol 33:136–141Google Scholar
  79. Jahn H (1990) Pilze an Bäumen. Patzer, BerlinGoogle Scholar
  80. James TY, Moncalvo J-M, Li S, Vilgalys R (2001) Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 157:149–161PubMedGoogle Scholar
  81. Jarosch M, Besl H (2001) Leucogyrophana, a polyphyletic genus of the order Boletales (Basidiomycetes). Plant Biol 3:443–448Google Scholar
  82. Jellison J, Goodell B (1988) Immunological detection of decay in wood. Wood Sci Technol 22:293–297Google Scholar
  83. Jellison J, Howell C, Goodell B, Quarles SL (2004) Investigations into the biology of Meruliporia incrassata. International Research Group on Wood Preservation Document, IRG/WP/10508:1–9Google Scholar
  84. Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215–243Google Scholar
  85. Jennings DH (1991) The physiology and biochemistry of the vegetative mycelium. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 55–79Google Scholar
  86. Jennings DH, Bravery AF (eds) (1991) Serpula lacrymans: fundamental biology and control strategies. Wiley, ChichesterGoogle Scholar
  87. Johannesson H, Stenlid J (1998) Molecular identification of wood-inhabiting fungi in an unmanaged Picea abies forest in Sweden. For Ecol Manage 4525:1–9Google Scholar
  88. Johnson BR, Chen GC (1983) Occurrence and inhibition of chitin in cell walls of wood-decay fungi. Holzforschung 37:255–259Google Scholar
  89. Karjalainen R (1996) Genetic relatedness among strains of Heterobasidion annosum as detected by random amplified polymorphic DNA markers. J Phytopathol 144:399–404Google Scholar
  90. Karlsson J-O, Stenlid J (1991) Pectic isozyme profiles of intersterility groups in Heterobasidion annosum. Mycol Res 95:531–536Google Scholar
  91. Kartal SN, Munir E, Kakitani T, Imamura Y (2004) Bioremediation of CCA-treated wood by brown-rot fungi Fomitopsis palustris, Coniophora puteana and Laetiporus sulphureus. J Wood Sci 50:182–188Google Scholar
  92. Kasuga T, Mitchelson KR (2000) Intersterility group differentiation in Heterobasidion annosum using ribosomal IGS1 region polymorphism. For Pathol 30:329–344Google Scholar
  93. Kauserud H, Högberg N, Knudsen H, Elbornes SA, Schumacher T (2004a) Molecular phylogenetics suggest a North American link between the anthropogenic dry rot fungus Serpula lacrymans and its wild relative S. himantioides. Mol Ecol 13:3137–3146PubMedGoogle Scholar
  94. Kauserud H, Schmidt O, Elfstrand M, Högberg N (2004b) Extremely low AFLP variation in the European dry rot fungus (Serpula lacrymans): implications for self/nonself-recognition. Mycol Res 108:1264–1270PubMedGoogle Scholar
  95. Kauserud H, Sætre G-P, Schmidt O, Decock C, Schumacher T (2006) Genetics of self/nonself recognition in Serpula lacrymans. Fung Genet Biol 43:503–510Google Scholar
  96. Kauserud H, Svegården IB, Sætre G-P, Knudsen H, Stensrud Ø, Schmidt O, Doi S, Sugiyama T, Högberg N (2007) Asian origin and rapid global spread of the destructive dry rot fungus Serpula lacrymans. Mol Ecol 16 (in press)Google Scholar
  97. Kim YS, Goodell B, Jellison J (1993) Immunogold labelling of extracellular metabolites from the white-rot fungus Trametes versicolor. Holzforschung 47:25–28Google Scholar
  98. Kjerulf-Jensen C, Koch AP (1992) Investigation of microwave heating as a means of eradicating dry rot attack in buildings. International Research Group on Wood Preservation Document, IRG/WP/1545:1–9Google Scholar
  99. Kleist G, Seehann G (1999) Der Eichenporling, Donkioporia expansa-ein wenig bekannter Holzzerstörer in Gebäuden. Z Mykol 65:23–32Google Scholar
  100. Koch A-P (1991) The current status of dry rot in Denmark and control strategies. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 147–154Google Scholar
  101. Korpi A, Pasanen AL, Viitanen H (1999) Volatile metabolites of Serpula lacrymans, Coniophora puteana, Poria placenta, Stachybotris chartarum and Chaetomium globosum. Build Environ 34:205–211Google Scholar
  102. La Porta N, Capretti P, Kammiovirta K, Karjalainen R, Korhonen K (1997) Geographical cline of DNA variation within the F intersterility group of Heterobasidion annosum in Italy. Plant Pathol 46:773–784Google Scholar
  103. Leithoff H, Stephan I, Lenz MT, Peek R-D (1995) Growth of the copper tolerant brown rot fungus Antrodia vaillantii on different substrates. International Research Group on Wood Preservation Document, IRG/WP/10121:1–10Google Scholar
  104. Li TY, Liu BH, Chen YC (2000) Characterization of Aspergillus spores my matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14:2393–2400PubMedGoogle Scholar
  105. Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Annu Rev Phytopathol 8:231–258Google Scholar
  106. Lloyd JD, Dickinson DJ (1992) Comparison of the effect of borate, germanate and tellurate on fungal growth and wood decay. International Research Group on Wood Preservation Document, IRG/WP/1533:1–16Google Scholar
  107. Lohwag K (1954) Der Hausschwamm Gyrophana lacrymans (Wulf.) Pat. und seine Begleiter. Sydowia II 6:268–283Google Scholar
  108. Lombard FF, Chamuris GP (1990) Basidiomycetes. In: Wang CJK, Zabel RA (eds) Identification manual for fungi from utility poles in the eastern United States. Am Type Culture Collection, Rockville, pp 21–104Google Scholar
  109. Martin F, Selosse M-A, Le Tacon F (1999) The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor: structural analysis and allelic polymorphism. Microbiology 145:1605–1611PubMedGoogle Scholar
  110. Moreth U, Schmidt O (2000) Identification of indoor rot fungi by taxon-specific priming polymerase chain reaction. Holzforschung 54:1–8Google Scholar
  111. Moreth U, Schmidt O (2005) Investigations on ribosomal DNA of indoor wood decay fungi for their characterization and identification. Holzforschung 59:90–93Google Scholar
  112. Nobles MK (1965) Identification of cultures of wood-inhabiting hymenomycetes. Can J Bot 43:1097–1139CrossRefGoogle Scholar
  113. Nuss I, Jennings DH, Veltkamp CJ (1991) Morphology of Serpula lacrymans. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 9–38Google Scholar
  114. Paajanen LM (1993) Iron promotes decay capacity of Serpula lacrymans. International Research Group on Wood Preservation Document, IRG/WP/10008:1–3Google Scholar
  115. Paajanen L, Viitanen H (1989) Decay fungi in Finnish houses on the basis of inspected samples from 1978 to 1988. International Research Group on Wood Preservation Document, IRG/WP/1401:1–4Google Scholar
  116. Palfreyman JW, Low G (2002) Studies of the domestic dry rot fungus Serpula lacrymans with relevance to the management of decay in buildings. Res Report. Historical Society of Scotland, EdinburghGoogle Scholar
  117. Palfreyman JW, Glancy H, Button D, Bruce A, Vigrow A, Score A, King B (1988) Use of immunoblotting for the analysis of wood decay basidiomycetes. International Research Group on Wood Preservation Document, IRG/WP/2307:1–8Google Scholar
  118. Palfreyman JW, Vigrow A, Button D, Hegarty B, King B (1991) The use of molecular methods to identify wood decay organisms. 1. The electrophoretic analysis of Serpula lacrymans. Wood Protect 1:15–22Google Scholar
  119. Palfreyman JW, Phillips EM, Staines HJ (1996) The effect of calcium ion concentration on the growth and decay capacity of Serpula lacrymans (Schumacher ex Fr.) Gray and Coniophora puteana (Schumacher ex Fr.) Karst. Holzforschung 50:3–8Google Scholar
  120. Palfreyman JW, Gartland JS, Sturrock CJ, Lester D, White NA, Low GA, Bech-Andersen J, Cooke DEL (2003) The relationship between “wild” and “building” isolates of the dry rot fungus Serpula lacrymans. FEMS Microbiol Lett 228:281–286PubMedGoogle Scholar
  121. Palmer JG, Eslyn WE (1980) Monographic information on Serpula (Poria) incrassata. International Research Group on Wood Preservation Document, IRG/WP/160:1–61Google Scholar
  122. Paul O (1990) Hausschwammbekämpfung mit Heissluft. Bautenschutz Basanierung 1:12–15Google Scholar
  123. Peyretaillade E, Biderre C, Peyret P, Duffieux F, Méténier G, Gouy M, Michot B, Vivarès CP (1998) Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rDNA reduced to the universal core. Nucleic Acids Res 26:3513–3520PubMedGoogle Scholar
  124. Phillips-Laing EM, Staines HJ, Palfreyman JW (2003) The isolation of specific bio-control agents for the dry rot fungus Serpula lacrymans. Holzforschung 57:574–578Google Scholar
  125. Potyralska A, Schmidt O, Moreth U, Łakomy P, Siwecki R (2002) rDNA-ITS sequence of Armillaria species and a specific primer for A. mellea. For Genet 9:119–123Google Scholar
  126. Råberg U, Högberg N, Land CJ (2004) Identification of brown-rot fungi on wood in above ground conditions by PCR, T-RFLP and sequencing. International Research Group on Wood Preservation Document, IRG/WP/10512:1–6Google Scholar
  127. Rattray P, McGill G, Clarke DD (1996) Antagonistic effects of a range of fungi to Serpula lacrymans. International Research Group on Wood Preservation Document, IRG/NP/10156:1–11Google Scholar
  128. Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Its biology and ecology. Wiley, ChichesterGoogle Scholar
  129. Ridout B (2000) Timber decay in buildings. The conservation approach to treatment. E & FN Spon, LondonGoogle Scholar
  130. Rypáček V (1966) Biologie holzzerstörender Pilze. Fischer, JenaGoogle Scholar
  131. Ryvarden L, Gilbertson RL (1993/1994) European polypores. 1. Synopsis Fung 6:1–387Google Scholar
  132. Ryvarden L, Gilbertson RL (1994) European polypores. 2. Synopsis Fung 7:394–743 Google Scholar
  133. Sallmann U (2005) Bekämpfender Holzschutz. In: Müller J (ed) Holzschutz im Hochbau. Fraunhofer IRB, Stuttgart, pp 265–303Google Scholar
  134. Savory JG (1964) Dry rot – a re-appraisal. Rec Br Wood Preserv Assoc 1964:69–76Google Scholar
  135. Schmidt O (2000) Molecular methods for the characterization and identification of the dry rot fungus Serpula lacrymans. Holzforschung 54:221–228Google Scholar
  136. Schmidt O (2006) Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin Heidelberg New YorkGoogle Scholar
  137. Schmidt O, Huckfeldt T (2005) Gebäudepilze. In: Müller J (ed) Holzschutz im Hochbau. Fraunhofer IRB, Stuttgart, pp 44–72Google Scholar
  138. Schmidt O, Kallow W (2005) Differentiation of indoor wood decay fungi with MALDI-TOF mass spectrometry. Holzforschung 59:374–377Google Scholar
  139. Schmidt O, Kebernik U (1989) Characterization and identification of the dry rot fungus Serpula lacrymans by polyacrylamide gel electrophoresis. Holzforschung 43:195–198Google Scholar
  140. Schmidt O, Moreth U (1995) Detection and differentiation of Poria indoor brown-rot fungi by polyacrylamide gel electrophoresis. Holzforschung 49:11–14Google Scholar
  141. Schmidt O, Moreth U (1996) Biological characterization of Poria indoor brown-rot fungi. Holzforschung 50:105–110Google Scholar
  142. Schmidt O, Moreth U (1998) Characterization of indoor rot fungi by RAPD analysis. Holzforschung 52:229–233CrossRefGoogle Scholar
  143. Schmidt O, Moreth U (1999) Identification of the dry rot fungus, Serpula lacrymans, and the wild merulius, S. himantioides, by amplified ribosomal DNA restriction analysis (ARDRA). Holzforschung 53:123–128Google Scholar
  144. Schmidt O, Moreth U (2000) Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lacrymans. Mycol Res 104:69–72Google Scholar
  145. Schmidt O, Moreth U (2002/2003) Data bank of rDNA-ITS sequences from building-rot fungi for their identification. Wood Sci Technol 36:429–433 (revision in Wood Sci Technol 37:161–163)Google Scholar
  146. Schmidt O, Moreth U (2003) Molecular identity of species and isolates of internal pore fungi Antrodia spp. and Oligoporus placenta. Holzforschung 57:120–126Google Scholar
  147. Schmidt O, Moreth-Kebernik U (1990) Biological and toxicant studies with the dry rot fungus Serpula lacrymans and new strains obtained by breeding. Holzforschung 44:1–6CrossRefGoogle Scholar
  148. Schmidt O, Moreth-Kebernik U (1991a) A simple method for producing basidiomes of Serpula lacrymans in culture. Mycol Res 95:375–376Google Scholar
  149. Schmidt O, Moreth-Kebernik U (1991b) Monokaryon pairings of the dry rot fungus Serpula lacrymans. Mycol Res 95:1382–1386Google Scholar
  150. Schmidt O, Grimm K, Moreth U (2002/2003) Molecular identity of species and isolates of the Coniophora cellar fungi. Holzforschung 56:563–571 (Addendum in Holzforschung 57:228)Google Scholar
  151. Schultze-Dewitz G (1985) Holzschädigende Organismen in der Altbausubstanz. Bauztg 39:565–566Google Scholar
  152. Schultze-Dewitz G (1990) Die Holzschädigung in der Altbausubstanz einiger brandenburgischer Kreise. Holz-Zbl 116:1131Google Scholar
  153. Schulze S, Bahnweg G (1998) Identification of the genus Armillaria (Fr.: Fr. Staude and Heterobasidion annosum (Fr.) Bref. in Norway spruce (Picea abies (L) Karst.) and determination of clonal distribution of A. ostoyae-genotypes by molecular methods. Forstwiss Cbl 117:98–114Google Scholar
  154. Schwarze FWMR, Londsdale D, Fink S (1997) An overview of wood degradation patterns and their implications for tree hazard assessment. Arboricult J 21:1–32Google Scholar
  155. Seehann G (1984) Monographic card on Antrodia serialis. International Research Group on Wood Preservation Document, IRG/WP/1145:1–11Google Scholar
  156. Selosse M-C, Costa G, Battista CD, Le Tacon F, Martin F (1996) Meiotic segregation and recombination of the intergenic spacer of the ribosomal DNA in the ectomycorrhizal basidiomycete Laccaria bicolor. Curr Genet 30:332–337PubMedGoogle Scholar
  157. Shimokawa T, Nakamura M, Hayashi N, Ishihara M (2004) Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction. Holzforschung 58:305–310Google Scholar
  158. Siau JF (1984) Transport processes in wood. Springer, Berlin Heidelberg New YorkGoogle Scholar
  159. Silverborg SB (1953) Fungi associated with the decay of wooden buildings in New York State. Phytopathology 43:20–22Google Scholar
  160. Stalpers JA (1978) Identification of wood-inhabiting Aphyllophorales in pure culture. Stud Mycol 16. Centraalbureau Schimmelcultures, BaarnGoogle Scholar
  161. Stephan I, Leithoff H, Peek R-D (1996) Microbial conversion of wood treated with salt preservatives. Mater Org 30:179–199Google Scholar
  162. Steinfurth A (2006) Possibilities and limitations of thermal control of dry rot (Serpula lacrymans). In: Int Conf Wood-Destroying Organisms in Focus – Alternative Measures for Preservation of Historic Buildings. Detmold, Germany, pp 62–63Google Scholar
  163. Sutter H-P (2003) Holzschädlinge an Kulturgütern erkennen und bekämpfen, 4th edn. Haupt, BernGoogle Scholar
  164. Theden G (1941) Untersuchungen über die Feuchtigkeitsansprüche der wichtigsten in Gebäuden auftretenden holzzerstörenden Pilze. Angew Bot 23:189–253Google Scholar
  165. Theden G (1972) Das Absterben holzzerstörender Pilze in trockenem Holz. Mater Org 7:1–10Google Scholar
  166. Theodore ML, Stevenson TW, Johnson GC, Thornton JD, Lawrie AC (1995) Comparison of Serpula lacrymans isolates using RAPD PCR. Mycol Res 99:447–450CrossRefGoogle Scholar
  167. Thornton JD (1989) The restricted distribution of Serpula lacrymans in Australian buildings. International Research Group on Wood Preservation Document, IRG/WP/1382:1–12Google Scholar
  168. Toft L (1993) Immunological identification in vitro of the dry rot fungus Serpula lacrymans. Mycol Res 97:290–292Google Scholar
  169. Unger A, Schniewind AP, Unger W (2001) Conservation of wood artifacts. Springer, Berlin Heidelberg New YorkGoogle Scholar
  170. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936Google Scholar
  171. Verrall AF (1968) Poria incrassata rot: prevention and control in buildings. USDA Forest Serv Tech Bull 1385Google Scholar
  172. Vigrow A, Palfreyman JW, King B (1991a) On the identity of certain isolates of Serpula lacrymans. Holzforsch 45:153–154Google Scholar
  173. Vigrow A, King B, Palfreyman JW (1991b) Studies of Serpula lacrymans mycelial antigens by Western blotting techniques. Mycol Res 95:1423–1428Google Scholar
  174. Viikari L, Ritschkoff A-C (1992) Prevention of brown-rot decay by chelators. IRG/WP/1540:1–7Google Scholar
  175. Viitanen H, Ritschkoff A-C (1991) Brown rot decay in wooden constructions. Effect of temperature, humidity and moisture. Swed Univ Agric Sci Dept For Prod 222Google Scholar
  176. Wälchli O (1980) Der echte Hausschwamm-Erfahrungen über Ursachen und Wirkungen seines Auftretens. Holz Roh-Werkstoff 38:169–174Google Scholar
  177. Wälchli O (1991) Occurrence and control of Serpula lacrymans in Switzerland. In: Jennings DH, Bravery AF (eds) Serpula lacrymans. Wiley, Chichester, pp 131–145Google Scholar
  178. Ważny H, Czajnik M (1963) On the occurrence of indoor wood-decay fungi in Poland (Polish). Fol For Polon 5:5–17Google Scholar
  179. Ważny J, Brodziak L (1981) Daedalea quercina (L.) ex Fr. In: Cockcroft R (ed) Some wood-destroying basidiomycetes. International Research Group on Wood Preservation Document, Boroko, Papua New Guinea, pp 47–53Google Scholar
  180. Weigl J, Ziegler H (1960) Wassergehalt und Stoffleitung bei Merulius lacrimans (Wulf.) Fr. Arch Mikrobiol 37:124–133Google Scholar
  181. White NA, Dehal PK, Duncan JM, Williams NA, Gartland JS, Palfreyman JW, Cooke DEL (2001) Molecular analysis of intraspecific variation between building and “wild” isolates of the dry rot fungus Serpula lacrymans and their relatedness to S. himantioides. Mycol Res 105:447–452Google Scholar
  182. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Sninisky JJ, White TJ (eds) PCR protocols. Academic Press, San Diego, pp 315–322Google Scholar
  183. Zabel RA, Morrell JJ (1992) Wood microbiology. Decay and its prevention. Academic Press, San DiegoGoogle Scholar
  184. Zaremski A, Ducousso M, Prin Y, Fouquet D (1999) Molecular characterization of wood-decaying fungi. Bois For Trop, Special Issue:76–81Google Scholar

Copyright information

© German Mycological Society and Springer 2007

Authors and Affiliations

  1. 1.Department of Wood BiologyUniversity of HamburgHamburgGermany

Personalised recommendations