Mycological Progress

, Volume 5, Issue 3, pp 178–184 | Cite as

Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert

  • Nora Dotzler
  • Michael KringsEmail author
  • Thomas N. Taylor
  • Reinhard Agerer
Original Article


Glomeromycotan spores from the Lower Devonian Rhynie chert provide the first evidence for germination shields in fossil fungi and demonstrate that this complex mode of germination was in place in some fungi at least 400 million years ago. Moreover, they represent the first direct marker relative to the precise systematic position of an Early Devonian endomycorrhizal fungus. In extant fungi, germination shields occur exclusively in the genus Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae). These structures are regarded as a derived feature within the phylum Glomeromycota, and hence their presence in the Rhynie chert suggests that major diversification within this group of fungi occurred before the Early Devonian.


Arbuscular mycorrhiza Evolution Germination Pragian (Early Devonian) Spore wall 



This study was supported in part by funds from the Alexander von Humboldt-Foundation (V-3.FLF-DEU/1064359 to M.K.) and the National Science Foundation (EAR-0542170 to T.N.T. and M.K.). We thank A. Schüßler and C. Walker for providing valuable information that contributed to this study and two anonymous reviewers for their insightful comments and suggestions.


  1. Agashe SN, Tilak ST (1970) Occurrence of fungal elements in the bark of arborescent calamite roots from the American Carboniferous. Bull Torrey Bot Club 97:216–218CrossRefGoogle Scholar
  2. Bentivenga SP, Morton JB (1996) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc Natl Acad Sci USA 93:5659–5662PubMedCrossRefGoogle Scholar
  3. Berbee LM, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol VII. Part B. Systematics and evolution. Springer, Berlin Heidelberg New York, pp. 229–245Google Scholar
  4. Corradi N, Hijri M, Fumagalli L, Sanders IR (2004) Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota). Fungal Genet Biol 41:1037–1045PubMedCrossRefGoogle Scholar
  5. Halket AC (1930) The rootlets of ‘Amyelon radicans’, Will.; Their anatomy, their apices and their endophytic fungus. Ann Bot 44:865–905Google Scholar
  6. Hass H, Rowe NP (1999) Thin sections and wafering. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. The Geological Society, London, pp. 76–81Google Scholar
  7. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133PubMedCrossRefGoogle Scholar
  8. Helgason T, Fitter A (2005) The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist 19:96–101CrossRefGoogle Scholar
  9. Helgason T, Watson IJ, Young PW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett 229:127–132PubMedCrossRefGoogle Scholar
  10. Herrera-Peraza RA, Cuenca G, Walker C (2001) Scutellospora crenulata, a new species of Glomales from La Gran Sabra, Venezuela. Can J Bot 79:674–678CrossRefGoogle Scholar
  11. INVAM (International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi).
  12. Kidston R, Lang WH (1921) On old red sandstone plants showing structure, from the Rhynie chert bed, Aberdeenshire. Part V. The Thallophyta occurring in the peat-bed; the succession of the plants through a vertical section of the bed, and the conditions of accumulation and preservation of the deposit. Trans R Soc Edinb 52:855–902Google Scholar
  13. Koske RE, Walker C (1986) Species of Scutellospora (Endogonaceae) with smooth-walled spores from maritime sand dunes: two new species and a redescription of the spores of Scutellospora pellucida and Scutellospora calospora. Mycotaxon 27:219–235Google Scholar
  14. Oehl F, Sieverding E (2004) Pacispora, a new vesicular arbuscular fungal genus in the Glomeromycetes. J Appl Bot (formerly Angew Bot) 78:72–82Google Scholar
  15. Osborn TGB (1909) The lateral roots of Amyelon radicans, Will., and their mycorrhiza. Ann Bot 23:603–611Google Scholar
  16. Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714CrossRefGoogle Scholar
  17. Pirozynski KA, Dalpé Y (1989) Geologic history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36Google Scholar
  18. Redecker D (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil 244:67–73CrossRefGoogle Scholar
  19. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  20. Redecker D, Kodner R, Graham LE (2002) Palaeoglomus grayi from the Ordovician. Mycotaxon 84:33–37Google Scholar
  21. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedCrossRefGoogle Scholar
  22. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  23. Schwarzott D, Walker D, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Mol Phylogenet Evol 21:190–197PubMedCrossRefGoogle Scholar
  24. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  25. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  26. Spain JL (1992) Patency of shields in water mounted spores of four species in Acaulosporaceae (Glomales). Mycotaxon 28:331–339Google Scholar
  27. Stubblefield SP, Banks HP (1983) Fungal remains in the Devonian trimerophyte Psilophyton dawsonii. Am J Bot 70:1258–1261CrossRefGoogle Scholar
  28. Stubblefield SP, Taylor TN (1988) Recent advances in paleomycology. New Phytol 108:3–25CrossRefGoogle Scholar
  29. Stubblefield SP, Taylor TN, Trappe JM (1987) Vesicular–arbuscular mycorrhizae from the Triassic of Antarctica. Am J Bot 74:1904–1911CrossRefGoogle Scholar
  30. Stürmer SL (1998) Characterization of diversity of fungi forming arbuscular endomycorrhizae in selected plant communities. Ph.D. thesis, West Virginia University, Morgantown WV, U.S.A. Morgantown WV, published online at
  31. Stürmer SL, Morton JB (1999) Taxonomic reinterpretation of morphological characters in Acaulosporaceae based on developmental patterns. Mycologia 91:849–857CrossRefGoogle Scholar
  32. Taylor TN, Krings M (2005) Fossil microorganisms and land plants: associations and interactions. Symbiosis 40:119–135Google Scholar
  33. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  34. Taylor TN, Klavins SD, Krings M, Taylor EL, Kerp H, Hass H (2004) Fungi from the Rhynie chert: a view from the dark side. Trans R Soc Edinb Earth Sci 94:457–473Google Scholar
  35. Taylor TN, Hass H, Kerp H (2005) Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci USA 102:5892–5897PubMedCrossRefGoogle Scholar
  36. Trewin NH, Rice CM (eds) (2004) The Rhynie hot springs system: geology, biota and mineralisation (Transactions of the Royal Society of Edinburgh, Earth Sciences 94). The Royal Society of Edinburgh Scotland Foundation, EdinburghGoogle Scholar
  37. Wagner CA, Taylor TN (1982) Fungal chlamydospores from the Pennsylvanian of North America. Rev Palaeobot Palynol 37:317–328CrossRefGoogle Scholar
  38. Walker C (1979) The mycorrhizast and the herbarium: the preservation of specimens from VA mycorrhizal studies. In: 4th North American Conference on Mycorrhiza. Fort Collins, CO, p 96Google Scholar
  39. Walker C, Diederichs C (1989) Scutellospora scutata sp. nov., a newly described endomycorrhizal fungus from Brazil. Mycotaxon 35:357–361Google Scholar
  40. Walker C, Sanders FE (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe. Mycotaxon 27:169–182Google Scholar
  41. Walker C, Gianinazzi-Pearson V, Marion-Espinasse H (1993) Scutellospora castanea, a newly described arbuscular mycorrhizal fungus. Cryptogam Mycol 14:279–286Google Scholar
  42. Walker C, Cuenca G, Sánchez F (1998) Scutellospora spinosissima sp. nov., a newly described glomeromycotan fungus from acidic, low nutrient plant communities in Venezuela. Ann Bot 82:721–725CrossRefGoogle Scholar
  43. Weiss FE (1904) A mycorrhiza from the lower coal measures. Ann Bot 18:255–265Google Scholar

Copyright information

© German Mycological Society and Springer 2006

Authors and Affiliations

  • Nora Dotzler
    • 1
    • 2
  • Michael Krings
    • 1
    • 3
    Email author
  • Thomas N. Taylor
    • 3
  • Reinhard Agerer
    • 2
  1. 1.Bayerische Staatssammlung für Paläontologie und Geologie und GeoBio-Center LMUMunichGermany
  2. 2.Department Biologie I und GeoBio-Center LMU, Bereich Biodiversitätsforschung: MykologieLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Research CenterThe University of KansasLawrenceUSA

Personalised recommendations