Mycological Progress

, Volume 5, Issue 3, pp 139–153 | Cite as

Phylogeny and taxonomy of powdery mildew fungi of Erysiphe sect. Uncinula on Carpinus species

  • Uwe Braun
  • Susumu Takamatsu
  • Vasyl Heluta
  • Saranya Limkaisang
  • Rangsi Divarangkoon
  • Roger Cook
  • Herbert Boyle
Original Article


A phylogenetic analysis of the Erysiphe with uncinuloid ascoma appendages (Erysiphe section Uncinula, Erysiphales, Ascomycota) on Carpinus spp. was done using sequences of the rDNA ITS regions and the D1/D2 domains of the 28S rDNA. These results, combined with morphological data, revealed a complex consisting of several distinct taxa. These included the already described Erysiphe carpinicola on C. japonica distinguishable from the Erysiphe sp. on C. betulus and C. tschonoskii as well as the one on C. laxiflora. Thus, it was shown that Oidium carpini, described from Europe on Carpinus betulus, the powdery mildew with uncinula-like ascomata, recently found in Europe on this host, as well as an Erysiphe on C. tschonoskii in Japan, described previously as E. carpinicola, all belong to a single new species, named E. arcuata in this paper. As the powdery mildew on C. laxiflora was also distinct from other known species, it is named E. carpini-laxiflorae in this paper. The already described E. pseudocarpinicola and Erysiphe sp. on Carpinus cordata are two additional taxa, which are morphologically and genetically distinguished from the other species of Erysiphe sect. Uncinula on Carpinus spp.


Erysiphales Erysiphe sect. Uncinula Erysiphecarpinicola new species sequence analyses morphology 

Taxonomical Novelties

Erysiphearcuata Erysiphecarpini-laxiflorae 



Since thanks are due to J. Fischer (Freiberg, Germany), H. Jage (Kemberg, Germany), V. Kummer (Potsdam, Germany), L. Vajna (Budapest, Hungary), S. Voytyuk (Kiev, Ukraine) and A. Wołczañska (Lublin, Poland) for kindly providing teleomorph collections on Carpinus betulus, to L. Kiss (Plant Protection Institute, Hungarian Academy of Sciences, Budapest) for his kind help and comments on this study, to D. P. Diomenko (laboratory of electron microscopy of M.G. Kholodny Institute of Botany, Ukraine), and I. Taylor (Central Science Laboratory, York, UK) for their help with scanning electron microscopy.


  1. Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Scientific Societies, TokyoGoogle Scholar
  2. Bolay A (2005) Les Oïdiums de Suisse (Erysiphaceae). Cryptogam Helv 20:1–173Google Scholar
  3. Braun U (1987) A monograph of the Erysiphales (powdery mildews). Nova Hedwigia Beih 89:1–700Google Scholar
  4. Braun U (1995) The powdery mildews (Erysiphales) of Europe. G. Fischer, JenaGoogle Scholar
  5. Braun U (1999) Some critical notes on the classification and generic concept of the Erysiphaceae. Schlechtendalia 3:49–55Google Scholar
  6. Braun U, Takamatsu S (2000) Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences—some taxonomic consequences. Schlechtendalia 4:1–33Google Scholar
  7. Bunkina IA (1991) Porjadok Erysiphales Gwinne-Vaughan. In: Azbukina ZM (ed) Nizshie rastenija, griby i mohoobraznye Sovetskogo Dal’nego Vostoka, Griby, Tom 2, Askomicety, Erizifal’nye, Klavicipital’nye, Gelocial’nye. Nauka, Leningrad, pp 11–142Google Scholar
  8. Chen GQ, Han SJ, Lai YQ, Yu YN, Zheng RY, Zhao ZY (1987) Flora fungorum sinicorum, vol. 1, Erysiphales. Science, BeijingGoogle Scholar
  9. Chen ZD, Manchester SR, Sun HY (1999) Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany. Am J Bot 86:1168–1181PubMedCrossRefGoogle Scholar
  10. Conert HJ, Hamann U, Schulze-Motel W, Wagenitz G (1981) Gustav Hegi’s Illustrierte Flora von Mitteleuropa, Band III, Teil 1. Paul Parey Verlag, Berlin–HamburgGoogle Scholar
  11. Cook RTA, Inman AJ, Billings C (1997) Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycol Res 101:975–1002CrossRefGoogle Scholar
  12. Czerepanov SK (1995) Plantae vasculares Rossicae et civitatum collimitanearum (in limicis URSS olim). Mir i Sem’ja, St. PetersburgGoogle Scholar
  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  14. Fang ZF, Zhao S, Skvortsov AK (1999) Betulaceae. In: Wu ZY, Raven PH (eds) Flora of China, Cycadaceae through Fagaceae. Science, Beijing and Missouri Botanical Garden, St. Louis, pp 286–313Google Scholar
  15. Hasegawa M, Kishino H, Yano TA (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  16. Heluta VP [Geluta WP] (1989) Flora gribov Ukrainy. Muchnistorosyanye griby. Naukova Dumka, KievGoogle Scholar
  17. Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience 37:265–270CrossRefGoogle Scholar
  18. Holmgren PK, Holmgren NH, Barbett LC (1990) Index herbariorum, Part. 1: The herbaria of the world, 8th edn. Regnum veg 120:1–163Google Scholar
  19. Horikawa Y (1972) Atlas of the Japanese flora, an introduction to plant sociology of East Asia. Gakken, TokyoGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  21. Kishino H, Hasegawa H (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179PubMedCrossRefGoogle Scholar
  22. Kusaba M, Tsuge T (1995) Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA. Curr Genet 28:491–498PubMedCrossRefGoogle Scholar
  23. Maddison DR, Maddison WP (2002) MacClade 4: analysis of phylogeny and character evolution. Version 4.05. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  24. Mori Y, Sato Y, Takamatsu S (2000a) Evolutionary analysis of the powdery mildew fungi using nucleotide sequences of the nuclear ribosomal DNA. Mycologia 92:74–93CrossRefGoogle Scholar
  25. Mori Y, Sato Y, Takamatsu S (2000b) Molecular phylogeny and radiation time of Erysiphales inferred from the nuclear ribosomal DNA sequences. Mycoscience 41:437–447CrossRefGoogle Scholar
  26. Nomura Y (1992) Erysiphaceae of Japan. Yotsukaido C., Japan (published by the author)Google Scholar
  27. Nomura Y (1997) Taxonomical study of Erysiphaceae of Japan. Yokendo, JapanGoogle Scholar
  28. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, SwedenGoogle Scholar
  29. Pitek M (2004) First report of powdery mildew (Oidium carpini) on Carpinus betulus in Poland. New Dis Rep 8, Aug. 2003–Jan. 2004 []
  30. Rancovic B (2003) Powdery mildew fungi (order Erysiphales) on plants in Montenegro (Chernogoria). Mikol Fitopatol 37:42–52Google Scholar
  31. Scheuer C (2003) Mykofloristische Erkenntnisse der Exkursion zur Lehrveranstaltung BIODIVERSITÄT DER PILZE (VE) am 18. und 25 Oktober 2003 [ html]
  32. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  33. Shin HD (2000) Erysiphaceae of Korea. Plant Pathogens of Korea 1. National Institute of Agricultural Science and Technology, Suwon, KoreaGoogle Scholar
  34. Siebold PF, Zuccarini JG (1846) Florae japonicae familiae naturales. II. MünchenGoogle Scholar
  35. Simonyan SA (1994) Mikoflora Armenii. VII. Muchnistorosyanye griby Armenii (por. Erysiphales). Izdatelstvo AN Armenii, YerevanGoogle Scholar
  36. Swofford DL (2001) PAUP: Phylogenetic Analysis Using Parsimony (and other methods) 4.0b8. Sinauer, Sunderland, MA, USAGoogle Scholar
  37. Szabó I (2003) Leaf pathogenic fungi of forest trees and shrubs in Hungary. Fritschiana 42:67–70Google Scholar
  38. Tai FL (1936) Notes on Chinese fungi VI. Additional notes on Erysiphaceae of China. Bull Chin Bot Soc 2:16–28Google Scholar
  39. Tai FL (1979) Sylloge fungorum sinicorum. Science, Academica Sinica, PekingGoogle Scholar
  40. Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequencing of rDNA of the powdery mildew fungi. Mycoscience 42:135–139CrossRefGoogle Scholar
  41. Takamatsu S, Braun U, Limkaisang S (2005a) Phylogenetic relationships and generic affinity of Uncinula septata inferred from nuclear rDNA sequences. Mycoscience 46:9–16CrossRefGoogle Scholar
  42. Takamatsu S, Niinomi S, Cabrera De Álvarez MG, Álvarez RE, Havrylenko M, Braun U (2005b) Caespitotheca gen. nov., an ancestral genus in the Erysiphales. Mycol Res 109:903–911PubMedCrossRefGoogle Scholar
  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  44. To-anun C, Kom-un S. Limkaisang S, Fangfuk W, Sato Y, Takamatsu S (2005) A new subgenus, Microidium, of Oidium (Erysiphaceae) on Phyllanthus spp. Mycoscience 46:1–8CrossRefGoogle Scholar
  45. Vajna L (2005) Powdery mildew caused by Erysiphe carpinicola on Carpinus betulus in Hungary: first European report. New Dis Rep 12, Aug. 2005–Jan. 2006 []
  46. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513PubMedGoogle Scholar
  47. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MS, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications, Academic, San Diego, California, pp 315–322Google Scholar
  48. Wołczańska A (2006) First report of Erysiphe carpinicola s.l. (perfect state) in Poland. New Dis Rep (in press)Google Scholar
  49. Yoo KO, Wen J (2002) Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int J Plant Sci 163:641–650CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer 2006

Authors and Affiliations

  • Uwe Braun
    • 6
  • Susumu Takamatsu
    • 1
  • Vasyl Heluta
    • 2
  • Saranya Limkaisang
    • 1
  • Rangsi Divarangkoon
    • 3
  • Roger Cook
    • 4
  • Herbert Boyle
    • 5
  1. 1.Laboratory of Plant Pathology, Faculty of BioresourcesMie UniversityTsuJapan
  2. 2.Institute of Botany of the National Academy of Sciences of UkraineKievUkraine
  3. 3.Department of Plant Pathology, Faculty of AgricultureChiang Mai UniversityChiangmaiThailand
  4. 4.YorkUK
  5. 5.Staatliches Museum für NaturkundeGörlitzGermany
  6. 6.FB. Biologie, Institut für Geobotanik und Botanischer Garten, HerbariumMartin-Luther UniversitätHalle/S.Germany

Personalised recommendations