Mycological Progress

, Volume 4, Issue 3, pp 205–214 | Cite as

Estimation of phylogenetic relationships within the Ascomycota on the basis of 18S rDNA sequences and chemotaxonomy

  • Ksenija Lopandic
  • Orsolya Molnár
  • Motofumi Suzuki
  • Wilhelm Pinsker
  • Hansjörg PrillingerEmail author


Small subunit rRNA gene sequences (18S rDNA), cell wall carbohydrate composition and ubiquinone components were analysed within a larger number of ascomycetous yeasts and dimorphic fungi to validate their congruence in predicting phylogenetic relationships. The glucose-mannose pattern distinguishes the Hemiascomycetes from the Euascomycetes and the Protomycetes which are characterised with the glucose-mannose-galactose-rhamnose-(fucose) profile. The glucose-mannose-galactose pattern was found in the cell walls of all the three classes. Different coenzyme Q component (CoQ5 to CoQ10) were found within the representatives of the Hemiascomycetes. Whereas CoQ9, CoQ10 and CoQ10H2 predominate within the Euascomycetes, CoQ9 and CoQ10 characterise the Protomycetes. Chemotaxonomic studies coupled with additional molecular and co-evolution studies support the idea that the Hemiascomycetes occupy a basal position in the phylogeny of Ascomycota. These results are not in line with the phylogenetic studies based on the sequences of 18S rRNA encoding gene. The maximum parsimony analysis indicated that Hemiascomycetes and Protomycetes might represent sister groups, opposing to the earlier reported results, where the Archiascomycetes (Protomycetes) or the Hemiascomycetes had been considered to be the most primitive ascomycetous fungi. Instead of the class Archiascomycetes, the term Protomycetes was introduced reflecting much better the properties of the whole class.

Key words

Ascomycota Protomycetes phylogeny 18S rDNA cell wall sugars urease activity ubiquinones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexopoulos CJ, Mims CW, Blackwell M (1996) Phylum Chytridiomycota. In Introductory Mycology, 4th edition, pp. 86–126. Wiley, New York.Google Scholar
  2. Ahrazem O, Gómez-Miranda B, Prieto A, Barasoaín I, Bernabé M, Leal A (2000) An acidic water-soluble cell wall polysaccharide: a chemotaxonomic marker for Fusarium and Gibberella. — Mycological Research 104: 603–610.CrossRefGoogle Scholar
  3. Barr M E (2001) Ascomycota. In Esser K, Lemke PA (eds.) The Mycota: Systematics and Evolution VII, Part A. pp. 161–177. Springer, Berlin, Heidelberg, New York.Google Scholar
  4. Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. — Canadian Journal of Botany 71: 1114–1127.Google Scholar
  5. Berbee M L, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In Esser K, Lemke PA (eds.) The Mycota: Systematics and Evolution VII, Part B. pp. 229–245. Springer, Berlin, Heidelberg, New York.Google Scholar
  6. Byers B, Goetsch L (1975) Electronic microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cervisiae. — Proceedings of the National Academy of Sciences USA. 72: 5056–5069.Google Scholar
  7. Cai J, Roberts IN, Collins MD (1996) Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. — International Journal of Systematic Bacteriology 46: 542–549.PubMedGoogle Scholar
  8. Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. — Molecular and Cellular Biology 10: 1863–1872.PubMedGoogle Scholar
  9. Eriksson OE (2001) SSU rDNA sequences from Ascomycota. — Myconet 6: 27–74.Google Scholar
  10. Goffeau A, Barell BG, Bussey H, Davis RW, Dujon B, Feldman H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. — Science 274: 574–567.CrossRefGoogle Scholar
  11. Gottschalk M, Blanz PA (1985) Untersuchungen an 5S ribosomalen Ribonucleinsäuren als Beitrag zur Klärung von Systematik und Phylogenie der Basidiomyceten. — Zeitschrift für Mykologie 51: 205–243.Google Scholar
  12. Hoheisel JD, Maier E, Mott R, McCarthy L, Gregoriev AV, Schalkwyk LC, Nizetic D, Francis F, Lehrach H (1993) High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe. — Cell 73: 109–120.CrossRefPubMedGoogle Scholar
  13. Kurtzman CP (1993) Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence. — Antonie van Leeuwenhoek. 63: 165–174.PubMedGoogle Scholar
  14. Kurtzman CP, Sugiyama J (2001) Ascomycetous Yeasts and Yeastlike Taxa. In Esser K, Lemke PA (eds.) The Mycota: Systematics and Evolution VII, Part A, pp. 179–200. Springer, Berlin, Heidelberg, New York.Google Scholar
  15. Leal AJ, Bernabé M (1998) Taxonomic applications of polysaccharides. In Frisvad JC, Bridge PD, Arora DK (eds.) Chemical Fungal Taxonomy, pp. 153–181. Marcel Dekker, New York, Basel, Hongkong.Google Scholar
  16. Liu Y, Whelen S, Hall B (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA Polymerase II Subunit. — Molecular Biology and Evolution 16: 1799–1808.PubMedGoogle Scholar
  17. Lopandic K, Prillinger H, Molnár O, Giménez-Jurado G (1996) Molecular characterization and genotypic identification of Metschnikowia species. — Systematic and Applied Microbiology 19: 393–402.Google Scholar
  18. Lumbsch HT, Wirtz N, Lindemuth R, Schmitt I (2002) Combined analysis of nuclear and mitochondrial sequence data improves resolution of major clades in filamentous ascomycetes. — Mycological Progress 1: 57–70.Google Scholar
  19. Messner R, Prillinger H, Altmann F, Lopandic K, Wimmer K, Molnár O, Weigang F (1994) Molecular characterisation and application of random amplified polymorphic DNA analysis of Mrakia and Sterigmatomyces species. — International Journal of Systematic Bacteriology 44: 694–703.PubMedGoogle Scholar
  20. Mewes HW, Albermann K, Bähr M, Frishman D, Gleissner A, Hani J, Heuman K, Kleine K, Maierl A, Oliver SG, Pfeifer F, Zollner A (1997a) Overview of the yeast genome. — Nature 387: 7–65.CrossRefPubMedGoogle Scholar
  21. Mewes HW, Albermann K, Heuman K, Liebl S, Pfeifer F (1997b) MIPS: a database for protein sequences, homology data and yeast genome information. — Nucleic Acids Research 35: 28–30.Google Scholar
  22. Moore TDE, Edman JC (1993) The a-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. — Molecular and Cellular Biology 13: 1962–1970.PubMedGoogle Scholar
  23. Müller E (1977) Systemfragen bei Ascomyceten. In Frey W, Hurka H, Oberwinkler F (eds) Beiträge zur Biologie der niederen Pflanzen, pp. 43–57. Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
  24. Nishida H, Sugiyama J (1994) Archiascomycetes: detection of a major new lineage within the Ascomycota. — Mycoscience 35: 361–366.CrossRefGoogle Scholar
  25. O’Brien RW, Ralph BJ (1966) The cell wall composition and taxonomy of some Basidiomycetes and Ascomycetes. — Annals of Botany, N.S. 30: 831–843.Google Scholar
  26. Prillinger H (1984) Zur Evolution von Mitose, Meiose und Kernphasenwechsel bei Chitinpilzen. — Zeitschrift für Mykologie 50: 267–352.Google Scholar
  27. Prillinger H (1987) Yeasts and anastomoses: their occurrence and implications for the phylogeny of Eumycota. In Rayner ADM, Brasier CM, Moore D (eds.) Evolutionary biology of the fungi, pp. 355–377. Cambridge University Press, Cambridge.Google Scholar
  28. Prillinger H, Deml G, Dörfler C, Laaser G, Lockau W (1991a) Ein Beitrag zur Systematik und Entwicklungsbiologie Höherer Pilze: Hefe-Typen der Basidiomyceten. Teil II: Microbotryum-Typ. — Botanica Acta 104: 5–17.Google Scholar
  29. Prillinger H, Dörfler C, Laaser G, Eckerlein B, Lehle L (1990a) Ein Beitrag zur Systematik und Entwicklungsbiologie Höherer Pilze: Hefe-Typen der Basidiomyceten. Teil I: Schizosaccharomycetales, Protomyces-Typ. — Zeitschrift für Mykologie 56: 219–250.Google Scholar
  30. Prillinger H, Dörfler C, Laaser G, Hauska G (1990b) Ein Beitrag zur Systematik und Entwicklungsbiologie Höherer Pilze: Hefe-Typen der Basidiomyceten. Teil III: Ustilago-Typ. — Zeitschrift für Mykologie 56: 251–278.Google Scholar
  31. Prillinger H, Laaser G, Dörfler C, Ziegler K (1991b) Ein Beitrag zur Systematik und Entwicklungsbiologie Höherer Pilze: Hefe-Typen der Basidiomyceten. Teil IV: Dacrymyces-Typ, Tremella-Typ. — Sydowia 53: 170–218.Google Scholar
  32. Prillinger H, Lopandic K, Schweigkofler W, Deak R, Aarts HJM, Bauer R, Sterflinger K, Kraus GF, Maraz A (2002) Phylogeny and systematics of the fungi with special reference to the Ascomycota and Basidiomycota. — In Breitenbach M., Crameri R., Lehrer SB (eds.) Fungal Allergy and Pathogenicity. Chemical Immunology 81: 207–295. Karger, Basel.Google Scholar
  33. Prillinger H, Messner R, König H, Bauer R, Lopandic K, Molnár O, Dangel P, Weigang F, Kirisits T, Nakase T, Sigler L (1996) Yeasts associated with termites: a phenotypic and genotypic characterisation and use of coevolution for dating evolutionary radiations in asco-and basidiomycetes. — Systematic and Applied Microbiology 19: 265–283.Google Scholar
  34. Prillinger H, Oberwinkler F, Umile C, Tlachac K, Bauer R, Dörfler C, Taufratzhofer E (1993) Analysis of cell wall carbohydrates (neutral sugars) from ascomycetous and basidiomycetous yeasts with and without derivatisation. — Journal of General and Applied Microbiology 39: 1–34.Google Scholar
  35. Prillinger H, Schweigkofler W, Breitenbach M, Briza P, Staudacher E, Lopandic K, Molnár O, Weigang F, Ibl M, Ellinger A (1997) Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. — Yeast 13: 945–960.CrossRefPubMedGoogle Scholar
  36. Savile DB (1955). A phylogeny of the Basidiomycetes. — Canadian Journal of Botany 33: 60–104.Google Scholar
  37. Savile DB (1968) Possible interrelationships between fungal groups. In Ainsworth GC, Suss-Man AS (eds) The Fungi, pp. 649–675. Academic Press, New York, London.Google Scholar
  38. Schweigkofler W, Lopandic K, Molnár O, Prillinger H (2002) Analysis of phylogenetic relationships among Ascomycota with yeast phases using ribosomal DNA sequences and cell wall sugars. — Organisms, Diversity & Evolution 2: 1–17.CrossRefGoogle Scholar
  39. Spatafora JW (1995) Ascomal evolution of filamentous ascomycetes: evidence from molecular data. — Canadian Journal of Botany (Suppl. 1) 73: S811–S815.Google Scholar
  40. Spencer JFT, Phaff HP, Gardner NR (1964) Metschnikowia kamienskii, sp. n., a yeast associated with brine shrimp. — Journal of Bacteriology 88: 758–762.PubMedGoogle Scholar
  41. Swofford DL (2002) PAUP*, Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4. Sinauer Associates, Sounderland, Massachusetts.Google Scholar
  42. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. — Nucleic Acids Research 24: 4874–4882.Google Scholar
  43. Voigt K, Wöstemeyer J (2001) Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1a genes. — Gene 270: 113–120.CrossRefPubMedGoogle Scholar
  44. Walossek D (1995) The Upper Cambrian Rehbachiella, its larval development, morphology and significance for the phylogeny of Branchiopoda and Crustacea. — Hydrobiologia 298: 1–13.Google Scholar
  45. Weijman ACM, De Hoog GS (1975) On the subdivision of the genus Ceratocystis. — Antonie van Leeuvenhoek 41: 353–360.Google Scholar
  46. Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In Kurtzman CP, Fell JW (eds) The Yeasts, a Taxonomic Study, 4th edn, pp. 854–872. Elsevier Science B.V: Amsterdam.Google Scholar

Copyright information

© DGfM 2005

Authors and Affiliations

  • Ksenija Lopandic
    • 1
  • Orsolya Molnár
    • 1
  • Motofumi Suzuki
    • 2
  • Wilhelm Pinsker
    • 3
  • Hansjörg Prillinger
    • 1
    Email author
  1. 1.Institute of Applied MicrobiologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Japan Collection of MicroorganismsRIKENWako, SaitamaJapan
  3. 3.Institut für Medizinische Biologie, Arbeitsgruppe GenetikUniversität WienWien

Personalised recommendations