Mycological Progress

, Volume 2, Issue 3, pp 219–225 | Cite as

The role of nitrate reductase in the degradation of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Penicillium sp. AK96151

  • Heidrun Anke
  • Andrea Kuhn
  • Roland W. S. Weber


In liquid culture on a defined growth medium, Penicillium sp. AK96151 efficiently degraded the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, hexogen), causing > 80 % disappearance after 10 d. RDX degradation was reduced to a basal level (< 15 % degraded after 10 d) by the presence of > 150 μM ammonium ions or when the molybdenum component of the medium was replaced by sodium tungstate. An equivalent effect of ammonium, molybdenum and tungsten was observed in protoplasts of this fungus assayed for nitrate reductase activity. This enzyme was not inhibited by RDX itself. The involvement of a nitrate reductase in RDX degradation by Penicillium has practical implications for bioremediation strategies which are discussed.


Explosive Molybdenum Penicillium Nitrate Reductase Triazine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alef K (1991) Methodenhandbuch Bodenmikrobiologie: Aktivitäten, Biomasse, Differenzierung. Ecomed, Landsberg/Lech, Germany.Google Scholar
  2. Averill BA (1995) Transformation of inorganic N-oxides by denitrifying and nitrifying bacteria. In Spain JC (ed), Biodegradation of Nitroaromatic Compounds, pp. 183–197. Plenum Press, New York.Google Scholar
  3. Bayman P, Ritchey SD, Bennett JW (1995) Fungal interactions with the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). — Journal of Industrial Microbiology 15: 418–423.CrossRefGoogle Scholar
  4. Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G., Hawari J. (2002) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine catalyzed by a NAD(P)H:nitrate oxidoreduxtase from Aspergillus niger. — Environmental Science and Technology 36: 3104–3108.CrossRefPubMedGoogle Scholar
  5. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. — Applied and Environmental Microbiology 61: 1318–1322.PubMedGoogle Scholar
  6. Birkett JA, Rowlands RT (1981) Chlorate resistance and nitrate assimilation in industrial strains of Penicillium chrysogenum. — Journal of General Microbiology 123: 281–285.Google Scholar
  7. Boopathy R, Gurgas M, Ullian J, Manning JF (1998) Metabolism of explosive compounds by sulfate-reducing bacteria. — Current Microbiology 37: 127–131.CrossRefPubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Analytical Biochemistry 72: 248–254.CrossRefPubMedGoogle Scholar
  9. Bryant C, DeLuca M (1991). Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. — Journal of Biological Chemistry 266: 4119–4125.PubMedGoogle Scholar
  10. Bryant C, Hubbard L, McElroy WD (1991) Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae. — Journal of Biological Chemistry 266: 4126–4130.PubMedGoogle Scholar
  11. Campbell WH, Kinghorn JR (1990) Functional domains of assimilatory nitrate reductases and nitrite reductases. — Trends in Biochemical Science 15: 315–319.CrossRefGoogle Scholar
  12. Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. — Soil Biology and Biochemistry 30: 1159–1167.CrossRefGoogle Scholar
  13. Cove DJ (1979) Genetic studies of nitrate assimilation in Aspergillus nidulans. — Biological Reviews 54: 291–327.PubMedGoogle Scholar
  14. Fernando T, Aust SD (1991) Biodegradation of munitions waste, TNT (2,4,6-trinitrotoluene), and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Phanerochaete chrysosporium. In Tedder DW, Pohland FG (eds), Emerging Technologies in Hazardous Waste Management II-American Chemical Society Symposium Series 468: 214–232.Google Scholar
  15. Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial phase optimization for bioremediation of munition compound-contaminated soils. — Applied and Environmental Microbiology 59: 2171–2177.PubMedGoogle Scholar
  16. Gates AJ, Hughes RO, Sharp SR, Millington PD, Nilavongse A, Cole JA, Leach E-R, Jepson B, Richardson DJ, Butler CS (2003) Properties of the periplasmic nitrate reductases from Paracoccus pantrophus and Escherichia coli after growth in tungsten-supplemented media. — FEMS Microbiology Letters 220: 261–269.CrossRefPubMedGoogle Scholar
  17. Glatigny A, Scazzocchio C (1995) Cloning and molecular characterization of hxA, the gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. — Journal of Biological Chemistry 270: 3534–3550.PubMedGoogle Scholar
  18. Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel K-H (1994) Microbial degradation of explosives and related compounds. — Critical Reviews in Microbiology 20: 265–284.PubMedGoogle Scholar
  19. Haas H, Marx F, Graessle S, Stoffler G (1996) Sequence analysis and expression of the Penicillium chrysogenum nitrate reductase encoding gene (niaD). — Biochimica et Biophysica Acta 1309: 81–84.PubMedGoogle Scholar
  20. Hawari J (2000) Biodegradation of RDX and HMX: from basic research to field application. In Spain JC, Hughes JB, Knackmuss H-J (eds), Biodegradation of Nitroaromatic Compounds and Explosives, pp. 277–310. CRC Press, Boca Raton.Google Scholar
  21. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. — Applied Microbiology and Biotechnology 54: 605–618.CrossRefPubMedGoogle Scholar
  22. Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. — Applied and Environmental Microbiology 66: 2652–2657.CrossRefPubMedGoogle Scholar
  23. Jennings DH (1995) The Physiology of Fungal Nutrition. Cambridge University Press, Cambridge.Google Scholar
  24. Jiranek V, Langridge P, Henschke PA (1995) Regulation of hydrogen sulfite liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. — Applied and Environmental Microbiology 61: 461–467.PubMedGoogle Scholar
  25. Johnstone IL, McCabe PC, Greaves P, Cole GE, Brow MA, Gurr SJ, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis M (1990) The isolation and characterization of the crnA-niiA-niaA gene cluster for nitrate assimilation in the filamentous fungus Aspergillus nidulans. — Gene 90: 181–192.CrossRefPubMedGoogle Scholar
  26. Kinouchi T, Onishi Y (1983) Purification and characterization of 1-nitropyrene nitroreductases from Bacterioides fragilis. — Applied and Environmental Microbiology 46: 596–604.PubMedGoogle Scholar
  27. Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: Structure and mechanism. — Annual Review of Biochemistry 66: 233–267.CrossRefPubMedGoogle Scholar
  28. Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). — Canadian Journal of Microbiology 46: 278–282.CrossRefPubMedGoogle Scholar
  29. Kobayashi M, Matsuo Y, Takimoto A, Suzuki S, Maruo F, Shoun H (1996) Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. — Journal of Biological Chemistry 271: 16263-16267.Google Scholar
  30. Kuhn A (2001) Untersuchungen zur Etablierung eines biologischen Sanierungsverfahrens mit Pilzen für sprengstoffkontaminiertes Grundwasser. P h.D. Thesis, University of Kaiserslautern, Germany.Google Scholar
  31. Marzluf GA (1981) Regulation of nitrogen metabolism and gene expression in fungi. — Microbiological Reviews 45: 437–461.PubMedGoogle Scholar
  32. Marzluf GA (1996) Regulation of nitrogen metabolism in mycelial fungi. In Brambl R, Marzluf GA (eds), The Mycota 3: Biochemistry and Molecular Biology, pp. 357–368. Springer-Verlag: Berlin, Heidelberg.Google Scholar
  33. McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. — Applied and Environmental Microbiology 42: 817–823.PubMedGoogle Scholar
  34. Nivinskas H, Koder RL, Anusevičius I, Šarlauskas J, Miller AF, Čenas N (2000) Two-electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H nitroreductase: description of quantitative structure-activity relationships. — Acta Biochimica Polonica 47: 941–949.PubMedGoogle Scholar
  35. Rieble S, Joshi DK, Gold MH (1994) Aromatic nitroreductase from the basidiomycete Phanerocheate chrysosporium. — Biochemical and Biophysical Research Communications 205: 298–304.CrossRefPubMedGoogle Scholar
  36. Roldan JM, Verbelen J, Butler WL, Tokuyasu K (1982) Intracellular localization of nitrate reductase in Neurospora crassa. — Plant Physiology 70: 872–874.Google Scholar
  37. Roncal T, Ugalde UO, Barnes J, Pitt D (1991) Production of protoplasts of Penicillium cyclopium with improved viability and functional properties. — Journal of General Microbiology 137: 1647–1651.Google Scholar
  38. Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. — Applied and Environmental Microbiology 68: 4764–4771.CrossRefPubMedGoogle Scholar
  39. Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. — Environmental Science and Technology 34: 3384–3388.Google Scholar
  40. Siverio JM, González C, Mendoza-Riquel A, Pérez D, González G (1993) Reversible inactivation and binding to mitochondria of nitrate reductase by heat shock in the yeast Hansenula anomala. — FEBS Letters 318: 153–156.CrossRefPubMedGoogle Scholar
  41. Sublette KL, Ganapathy EV, Schwartz S (1992) Degradation of munitions wastes by Phanerochaete chrysosporium. — Applied Biochemistry and Biotechnology 34/35: 709–723.Google Scholar
  42. Subramanian KN, Sorger GJ (1972) The role of molybdenum in the synthesis of Neurospora nitrate reductase. — Biochimica et Biophysica Acta 256: 533–543.PubMedGoogle Scholar
  43. Tomsett AB (1989) The genetics and biochemistry of nitrate assimilation in ascomycete fungi. In Boddy L, Marchant R, Read DJ (eds), Nitrogen, Phosphorus and Sulphur Utilization by Fungi, pp. 33–57. Cambridge University Press: Cambridge.Google Scholar
  44. Ugalde UO (1991) Preparation of highly purified plasma membrane vesicles of controlled orientation from Penicillium cyclopium. — Mycological Research 95: 1303–1307.Google Scholar
  45. Weber RWS, Wakley GE, Pitt D (1999) Histochemical and ultrastructural characterization of vacuoles and spherosomes as components of the lytic system in hyphae of the fungus Botrytis cinerea. — Histochemical Journal 31: 293–301.PubMedGoogle Scholar
  46. Weber RWS, Ridderbusch DC, Anke H (2002) 2,4,6-Trinitrotoluene (TNT) tolerance and biotransformation potential of microfungi isolated from TNT-contaminated soil. — Mycological Research 106: 336–344.CrossRefGoogle Scholar
  47. Weber RWS, Kuhn A, Anke H (2003) Soil-borne Penicillium spp. and other microfungi as efficient degraders of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). — Mycological Progress 2: 83–93.CrossRefGoogle Scholar

Copyright information

© DGfM 2003

Authors and Affiliations

  • Heidrun Anke
    • 1
  • Andrea Kuhn
    • 1
  • Roland W. S. Weber
    • 2
  1. 1.Institute of Biotechnology and Drug Research (IBWF)KaiserslauternGermany
  2. 2.Department of BiotechnologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations