Advertisement

Real-time high-resolution omnidirectional imaging platform for drone detection and tracking

  • Bilal DemirEmail author
  • Selman Ergunay
  • Gokcen Nurlu
  • Vladan Popovic
  • Beat Ott
  • Peter Wellig
  • Jean-Philippe Thiran
  • Yusuf Leblebici
Original Research Paper
  • 150 Downloads

Abstract

Drones have become steadily affordable, which raises privacy and security concerns as well as interest in drone detection systems. On the other hand, drone detection is a challenging task due to small dimensions of drones, difficulty of long-distance detection, strict real-time constraints and necessity of wide angle coverage for drones. Although different radar and audio-assisted drone detection systems have been presented, they suffer from the cost, range, or interference problems. On the contrary, a long-range detection can be obtained by a vision-based system. Aiming that, we propose a real-time moving object detection and tracking system optimized for drone detection using 16 cameras with 20 MP resolution. The proposed system detects drones from short range and long range with 360\(^{\circ }\) surveillance coverage owing high-performance ultra-high-resolution (320 MP) video-processing capability. It is able to detect drones with 100 cm diameter from 700 m distance despite deceptive background. It is interference free, so multiple systems can properly operate in the vicinity without effecting each other. It integrates processing power of embedded systems with flexibility of software to generate a full platform for drone detection and tracking.

Keywords

Panorama Background subtraction High resolution Moving object detection Embedded system 

Notes

References

  1. 1.
    Liu, H., Wei, Z., Chen, Y., Pan, J., Lin, L., Ren, Y.: in 2017 IEEE Third International Conference on Multimedia Big Data (BigMM) (2017), pp. 402–406.  https://doi.org/10.1109/BigMM.2017.57
  2. 2.
    Clarke, R., Moses, L.B.: The regulation of civilian drones’ impacts on public safety. Comput. Law Secur. Rev. 30(3), 263–285 (2014)CrossRefGoogle Scholar
  3. 3.
    Clarke, R.: Understanding the drone epidemic. Comput. Law Secur. Rev. 30(3), 230–246 (2014)CrossRefGoogle Scholar
  4. 4.
    Brooks, M.: Welcome to the personal drone revolution. New Sci. 216(2894), 42–45 (2012)Google Scholar
  5. 5.
    Stapleford, S.: Drone aircraft detector (2016)Google Scholar
  6. 6.
    Hearing, B., Franklin, J.: Drone detection and classification methods and apparatus (2016)Google Scholar
  7. 7.
    Andraši, P., Radišić, T., Muštra, M., Ivošević, J.: Transp. Res. Proc. 28, 183 (2017).  https://doi.org/10.1016/j.trpro.2017.12.184 CrossRefGoogle Scholar
  8. 8.
    Chiang, D., Fishbein, W., Sheppard, D.: In 1993 Proceedings of IEEE International Carnahan Conference on Security Technology (1993), pp. 127–133.  https://doi.org/10.1109/CCST.1993.386813
  9. 9.
    Aljaafreh, A.: A. Al-Fuqaha 4, (2010)Google Scholar
  10. 10.
    Busset, J., Perrodin, F., Wellig, P., Ott, B., Heutschi, K., Rühl, T., Nussbaumer, T.: Detection and tracking of drones using advanced acoustic cameras (2015)Google Scholar
  11. 11.
    Dimitropoulos, K., Grammalidis, N., Simitopoulos, D., Pavlidou, N., Strintzis, M.: in IEEE International Conference on Image Processing 2005, vol. 2 , pp. II–594–7.  https://doi.org/10.1109/ICIP.2005.1530125 (2005)
  12. 12.
    Rozantsev, A., Lepetit, V., Fua, P.: IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 879 (2017).  https://doi.org/10.1109/TPAMI.2016.2564408
  13. 13.
    Rozantsev, A., Lepetit, V., Fua, P.: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4128–4136 (2015).  https://doi.org/10.1109/CVPR.2015.7299040
  14. 14.
    Huang, L., Tang, S., Zhang, Y., Lian, S., Lin, S.: Neurocomputing 118(Supplement C), 191 (2013).  https://doi.org/10.1016/j.neucom.2013.03.003. http://www.sciencedirect.com/science/article/pii/S0925231213003226
  15. 15.
    Popovic, V., Afshari, H., Schmid, A., Leblebici, Y.: In 2013 IEEE International Conference on Industrial Technology (ICIT) (2013), pp. 1173–1178.  https://doi.org/10.1109/ICIT.2013.6505839
  16. 16.
    Brown, M., Lowe, D.G.: Int. J. Comput. Vis. 74(1), 59 (2007).  https://doi.org/10.1007/s11263-006-0002-3
  17. 17.
    Popovic, V., Leblebici, Y.: in 2015 IEEE International Conference on Image Processing (ICIP) , pp. 4411–4415 (2015).  https://doi.org/10.1109/ICIP.2015.7351640
  18. 18.
    Mudjirahardjo, P., Suyono, H., Setyawan, R.A.: in 2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (2017), pp. 92–95.  https://doi.org/10.1109/ICEEIE.2017.8328769
  19. 19.
    Park, J., Kim, D.H., Shin, Y.S., Lee, S.: in 2017 17th International Conference on Control, Automation and Systems (ICCAS) (2017), pp. 696–699.  https://doi.org/10.23919/ICCAS.2017.8204318
  20. 20.
    Xu, Y., Zhou, Q., Gong, L., Zhu, M., Ding, X., Teng, R.K.F.: IEEE Trans. Circ. Syst. Video Technol. 24(6), 1061 (2014).  https://doi.org/10.1109/TCSVT.2013.2290576
  21. 21.
    P.G.R. Inc. Spherical video system ladybug2 and ladybug3. http://www.ptgrey.com
  22. 22.
    Schreer, O., Feldmann, I., Weissig, C., Kauff, P., Schafer, R.: Proc IEEE 101(1), 99 (2013).  https://doi.org/10.1109/JPROC.2012.2193850
  23. 23.
    Seyid, K., Popovic, V., Cogal, O., Akin, A., Afshari, H., Schmid, A., Leblebici, Y.: IEEE Trans. Circ. Syst. Video Technol. 25(2), 314 (2015).  https://doi.org/10.1109/TCSVT.2014.2355713

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Bloomberg LPLondonUK
  3. 3.Intel CorpSanta ClaraUSA
  4. 4.Armasuisse Science and TechnologyThunSwitzerland

Personalised recommendations